Showing posts with label polygons) GL ASSESSMENT QUESTIONS 11 plus exam part -8. Show all posts
Showing posts with label polygons) GL ASSESSMENT QUESTIONS 11 plus exam part -8. Show all posts

Thursday, January 1, 2026

Geometry: Shapes & Angles,polygons) GL ASSESSMENT QUESTIONS 11 plus exam part -8

 Geometry: Shapes & Angles,polygons) GL ASSESSMENT QUESTIONS 11 plus exam part -8

11+ GL ASSESSMENT GEOMETRY: ESSENTIAL STUDY GUIDE

PART 1: 2D SHAPES - MUST KNOW PROPERTIES

TRIANGLES

EQUILATERAL TRIANGLE

  • Sides: All 3 sides EQUAL

  • Angles: All 3 angles = 60° each

  • Symmetry:

    • Lines of symmetry: 3

    • Rotational symmetry: Order 3

  • Perimeter: Side × 3

  • Area: (√3/4) × side²

  • Key fact: Height < side length

ISOSCELES TRIANGLE

  • Sides: 2 equal sides, 1 different

  • Angles: 2 equal angles (base angles), 1 different (vertex angle)

  • Symmetry:

    • Lines of symmetry: 1 (through vertex)

    • Rotational symmetry: Order 1 (none)

  • Key formula: Vertex angle + 2 × base angle = 180°

  • Perimeter: (2 × equal side) + base

SCALENE TRIANGLE

  • Sides: All 3 sides DIFFERENT

  • Angles: All 3 angles DIFFERENT

  • Symmetry: NO lines of symmetry

  • Can be: Acute, right-angled, or obtuse

RIGHT-ANGLED TRIANGLE

  • Angles: Contains exactly one 90° angle

  • Sides: Longest side = hypotenuse (opposite right angle)

  • Pythagoras: a² + b² = c² (where c is hypotenuse)

  • Area: ½ × base × height

QUADRILATERALS

SQUARE

  • Sides: All 4 sides EQUAL

  • Angles: All 4 angles = 90°

  • Symmetry:

    • Lines of symmetry: 4 (2 through midpoints, 2 through vertices)

    • Rotational symmetry: Order 4

  • Diagonals: Equal, bisect at 90°, bisect angles

  • Perimeter: 4 × side

  • Area: side²

RECTANGLE

  • Sides: Opposite sides equal, adjacent sides different

  • Angles: All 4 angles = 90°

  • Symmetry:

    • Lines of symmetry: 2 (through midpoints)

    • Rotational symmetry: Order 2

  • Diagonals: Equal, bisect each other (not at 90°)

  • Perimeter: 2 × (length + width)

  • Area: length × width

PARALLELOGRAM

  • Sides: Opposite sides equal and parallel

  • Angles: Opposite angles equal, adjacent supplementary

  • Symmetry:

    • Lines of symmetry: Usually 0 (except rhombus/rectangle)

    • Rotational symmetry: Order 2

  • Diagonals: Bisect each other (not equal, not at 90°)

  • Area: base × height (NOT side × side)

RHOMBUS

  • Sides: All 4 sides EQUAL

  • Angles: Opposite angles equal (not necessarily 90°)

  • Symmetry:

    • Lines of symmetry: 2 (through opposite vertices)

    • Rotational symmetry: Order 2

  • Diagonals: Perpendicular (90°), bisect each other, bisect angles

  • Area: ½ × diagonal1 × diagonal2

TRAPEZIUM (UK) / TRAPEZOID (US)

  • Sides: Exactly ONE pair of parallel sides

  • Angles: No specific requirements

  • Symmetry: Usually 0 (unless isosceles trapezium)

  • Area: ½ × (sum of parallel sides) × height

  • Isosceles trapezium: Non-parallel sides equal, has 1 line of symmetry

KITE

  • Sides: Two pairs of ADJACENT sides equal

  • Angles: One pair of opposite angles equal

  • Symmetry:

    • Lines of symmetry: 1 (through unequal angles)

    • Rotational symmetry: Order 1 (none)

  • Diagonals: Perpendicular, one diagonal bisected

  • Area: ½ × diagonal1 × diagonal2

POLYGONS

REGULAR POLYGONS

  • All sides equal, all angles equal

  • Sum of interior angles: (n - 2) × 180° (n = number of sides)

  • Each interior angle: (n - 2) × 180° ÷ n

  • Sum of exterior angles: ALWAYS 360°

  • Each exterior angle: 360° ÷ n

  • Number of diagonals: n(n - 3) ÷ 2

COMMON POLYGONS:

  • Triangle (3), Quadrilateral (4), Pentagon (5), Hexagon (6)

  • Heptagon (7), Octagon (8), Nonagon (9), Decagon (10)


PART 2: 3D SHAPES - ESSENTIAL FACTS

CUBE

  • Faces: 6 squares

  • Edges: 12

  • Vertices: 8

  • Symmetry: High symmetry in all directions

  • Volume: side³

  • Surface area: 6 × side²

CUBOID (RECTANGULAR PRISM)

  • Faces: 6 rectangles (or squares)

  • Edges: 12

  • Vertices: 8

  • Volume: length × width × height

  • Surface area: 2(lw + lh + wh)

TRIANGULAR PRISM

  • Faces: 5 (2 triangles + 3 rectangles)

  • Edges: 9

  • Vertices: 6

  • Volume: area of triangle × length

SQUARE-BASED PYRAMID

  • Faces: 5 (1 square + 4 triangles)

  • Edges: 8

  • Vertices: 5

  • Volume: ⅓ × base area × height

TRIANGULAR PYRAMID (TETRAHEDRON)

  • Faces: 4 triangles

  • Edges: 6

  • Vertices: 4

  • Volume: ⅓ × base area × height

CYLINDER

  • Faces: 3 (2 circles + 1 curved)

  • Edges: 2 curved edges

  • Vertices: 0

  • Volume: Ο€r²h

  • Curved surface area: 2Ο€rh

CONE

  • Faces: 2 (1 circle + 1 curved)

  • Edges: 1 curved edge

  • Vertices: 1

  • Volume: ⅓Ο€r²h

SPHERE

  • Faces: 1 curved surface

  • Edges: 0

  • Vertices: 0

  • Volume: ⁴⁄₃Ο€r³

  • Surface area: 4Ο€r²

EULER'S FORMULA (FOR POLYHEDRA)

F + V = E + 2

  • Faces + Vertices = Edges + 2

  • MEMORY TIP: "Faces and Vertices equal Edges plus 2"


PART 3: ANGLES - COMPLETE GUIDE

TYPES OF ANGLES

  1. Acute: < 90°

  2. Right: = 90° (marked with small square)

  3. Obtuse: > 90° but < 180°

  4. Straight line: = 180°

  5. Reflex: > 180° but < 360°

  6. Full turn: = 360°

RELATIONSHIPS

  • Complementary angles: Sum = 90°

  • Supplementary angles: Sum = 180°

  • Adjacent angles: Share vertex and side, no overlap

  • Vertically opposite: Equal angles where two lines cross

ANGLE RULES - MEMORIZE THESE!

RULE 1: STRAIGHT LINE

Angles on a straight line = 180°

  • Example: If one angle is 115°, the other is 65°

RULE 2: AROUND A POINT

Angles around a point = 360°

  • Example: Three angles are 110°, 95°, 80°, fourth = 75°

RULE 3: VERTICALLY OPPOSITE

Vertically opposite angles are EQUAL

  • Example: Where lines cross, angles opposite each other are equal

RULE 4: TRIANGLE

Sum of angles in triangle = 180°

  • Corollary:

    • Right triangle: two acute angles complementary (sum = 90°)

    • Isosceles: base angles equal

    • Equilateral: all angles = 60°

RULE 5: QUADRILATERAL

Sum of angles in quadrilateral = 360°

RULE 6: PARALLEL LINES

When parallel lines are crossed by transversal:

  • Corresponding angles: Equal (F shape)

  • Alternate angles: Equal (Z shape)

  • Allied/Co-interior angles: Sum = 180° (C shape)


PART 4: SYMMETRY - KEY POINTS

LINE SYMMETRY (REFLECTION)

  • Shape can be folded in half to match exactly

  • Number of lines: Count all possible fold lines

  • Regular polygon with n sides: n lines of symmetry

ROTATIONAL SYMMETRY

  • Shape can be rotated and look the same before completing full turn

  • Order: Number of times shape fits in 360° rotation

  • Order 1: No rotational symmetry (only looks same at start)

COMMON SHAPES SYMMETRY TABLE

ShapeLines of SymmetryRotational Symmetry Order
Square44
Rectangle22
Rhombus22
Parallelogram0 (usually)2
Equilateral triangle33
Isosceles triangle11
Scalene triangle01
Regular pentagon55
Regular hexagon66
CircleInfiniteInfinite
Kite11

PART 5: COORDINATES - ESSENTIAL KNOWLEDGE

COORDINATE SYSTEM

  • (x, y) format

  • x: Horizontal position (left-right)

  • y: Vertical position (up-down)

  • Origin: (0, 0) where axes cross

QUADRANTS

  1. Quadrant I: (+, +) - top right

  2. Quadrant II: (-, +) - top left

  3. Quadrant III: (-, -) - bottom left

  4. Quadrant IV: (+, -) - bottom right

IMPORTANT FORMULAS

DISTANCE BETWEEN TWO POINTS

Distance = √[(x₂ - x₁)² + (y₂ - y₁)²]

  • Memory tip: "Difference in x squared plus difference in y squared, then square root"

MIDPOINT FORMULA

Midpoint = ((x₁ + x₂)/2, (y₁ + y₂)/2)

  • Memory tip: "Average the x's, average the y's"

GRADIENT (SLOPE)

Gradient = (y₂ - y₁) ÷ (x₂ - x₁)

  • Positive slope: line goes up right

  • Negative slope: line goes down right

  • Zero slope: horizontal line

  • Undefined slope: vertical line

TRANSFORMATIONS

REFLECTION

  • In x-axis: (x, y) → (x, -y) [y changes sign]

  • In y-axis: (x, y) → (-x, y) [x changes sign]

  • In line y = x: (x, y) → (y, x) [swap coordinates]

ROTATION (ABOUT ORIGIN)

  • 90° clockwise: (x, y) → (y, -x)

  • 90° anticlockwise: (x, y) → (-y, x)

  • 180°: (x, y) → (-x, -y)

TRANSLATION

  • Movement by vector (a, b): (x, y) → (x + a, y + b)


PART 6: MEMORY AIDS & EXAM TIPS

ACRONYMS TO REMEMBER

ANGLE TYPES

A ROSE:

  • A = Acute (< 90°)

  • R = Right (90°)

  • O = Obtuse (90°-180°)

  • S = Straight (180°)

  • E = everything bigger = Reflex (> 180°)

QUADRILATERAL FAMILY TREE

All Squares are Rectangles but not all Rectangles are Squares
All Squares are Rhombuses but not all Rhombuses are Squares

POLYGON ANGLE FORMULA

SIA: (Sides - 2) × 180 = Interior Angle sum

EXAM TECHNIQUES

  1. DRAW DIAGRAMS: Always sketch the problem

  2. LABEL EVERYTHING: Mark known angles, sides

  3. WORK SYSTEMATICALLY: Use angle rules step by step

  4. CHECK REASONABLENESS: Does your answer make sense?

  5. USE FORMULAS CORRECTLY: Write them down first

COMMON MISTAKES TO AVOID

  1. Confusing area and perimeter: Area = space inside, Perimeter = distance around

  2. Mixing up 2D and 3D properties: Faces vs sides, vertices vs corners

  3. Forgetting units: Always include cm, m, cm², cm³

  4. Misreading scale: Check if diagram is to scale

  5. Assuming symmetry: Don't assume unless stated "regular" or given

QUICK REFERENCE CHART

ConceptKey Formula/PropertyExample
Triangle anglesSum = 180°60°+70°+50°=180°
Quadrilateral anglesSum = 360°90°+100°+80°+90°=360°
Regular polygon interior(n-2)×180°÷nOctagon: (8-2)×180÷8=135°
Regular polygon exterior360°÷nHexagon: 360÷6=60°
Cube volumeside³side=4cm, volume=64cm³
Cuboid volumel×w×h3×4×5=60cm³
Distance between points√[(Ξ”x)²+(Ξ”y)²](1,1) to (4,5): √(9+16)=5
Midpoint(avg x, avg y)(2,4)&(6,8): (4,6)

PART 7: LAST-MINUTE REVISION CHECKLIST

24 HOURS BEFORE EXAM:

  • Memorize angle rules (straight line=180°, point=360°)

  • Know triangle types and properties

  • Remember quadrilateral hierarchy

  • Practice 3D shape nets

  • Review coordinate transformations

1 HOUR BEFORE EXAM:

  • Write down key formulas

  • Sketch common shapes with properties

  • Practice mental calculations

  • Relax and visualize success

DURING EXAM:

  • Read questions TWICE

  • Underline key information

  • Draw diagrams for geometry questions

  • Show working (gets method marks)

  • Check units and reasonableness

  • Answer ALL questions (no penalty for wrong answers)

REMEMBER: Geometry is visual - if stuck, DRAW IT OUT! Use logical steps, apply rules systematically, and check your work. You've got this!

Geometry: Shapes & Angles,polygons) GL ASSESSMENT QUESTIONS 11 plus exam part -6

 Geometry: Shapes & Angles,polygons) GL ASSESSMENT QUESTIONS 11 plus exam part -6 Comprehensive GL Assessment 11+ Geometry Question Bank...