Saturday, April 15, 2023

When you are dating a mathematician!

When you are dating a Mathematician!




learning class

87346 x 99999 = ? роЪிро▓ ро╡ிроиாроЯிроХро│ிро▓் ро╡ிроЯை роХрог்роЯுрокிроЯிроХ்роХро▓ாроо் - 
роЙроЩ்роХро│் роХுро┤рои்родைроХро│ுроХ்роХு роТро░ு ро╡ாроп்рок்рокு!
ро╡ро░ро▓ாро▒ு роОрой்ро▒ாро▓் роХродை роЪொро▓்ро▓ро▓ாроо், роЕро▒ிро╡ிропро▓் роОрой்ро▒ாро▓் роЪெроп்родுроХாроЯ்роЯро▓ாроо், рооொро┤ி рокроЯроЩ்роХро│ிро▓் роХро╡ிродைропுроо், роХроЯ்роЯுро░ைропுроо் роХро│ைроХроЯ்роЯுроо். роЖройாро▓் роХрогроХ்роХு роЕрок்рокроЯிропா? ро╡ெро▒ுроо் роОрог்роХро│், роЪூрод்родிро░роЩ்роХро│் роОрой роЪро▒்ро▒ு роЯ்ро░ை роЖрой роЪрок்роЬெроХ்роЯ்родாрой். роЕродройாро▓ேропே роХрогроХ்роХு роОрой்ро▒ாро▓் рокрод்родு роЕроЯி родро│்ро│ி роиிро▒்роХுроо் рооாрогро╡ро░்роХро│் роЙрог்роЯு. роЖройாро▓் роЕродро▒்роХெро▓்ро▓ாроо் родீро░்ро╡ு роЙрог்роЯு. роХрогроХ்роХைроХ் роХрог்роЯு рокропрок்рокроЯாрооро▓் ро╡ிро│ைропாроЯ்роЯாроХ ро░роЪிрод்родுрок் рокроЯிроХ்роХро▒ рокропிро▒்роЪிропை роЙроЩ்роХро│родு роХுро┤рои்родைроХро│் рокெро▒ ро╡ேрог்роЯுроо் роОрой рокிро░ைрой்роХாро░்ро╡் роиிро▒ுро╡ройрод்родுроЯрой் роЗрогைрои்родு 'роХрогроХ்роХு роЗройி роХроЪроХ்роХாродு' роОрой்ро▒ роЖрой்ро▓ைрой் рокропிро▒்роЪி ро╡роХுрок்рокிро▒்роХு роПро▒்рокாроЯு роЪெроп்родிро░ுроХ்роХிро▒родு роЖройрои்род ро╡ிроХроЯрой்
роХрогроХ்роХு роЗройி роХроЪроХ்роХாродு
роЪிро▒ு ро╡ропродு рооுродро▓ே роХрогроХ்роХு роОройுроо் рокாроЯрод்родைрок் рокெро░ுроо் рокாро░рооாроХ, рокропрод்родுроЯрой்родாрой் рокро▓ро░் роЕрогுроХிропிро░ுроХ்роХிро▒ாро░்роХро│்..роЖройாро▓் роХுро┤рои்родைроХро│ுроХ்роХுроХ் роХрогроХ்роХுрок் рокாроЯрод்родை ро░роЪிроХ்роХுроо்рокроЯி роЪொро▓்ро▓ிрод்родро░ рооுроЯிропுроо் роОрой்роХிро▒ாро░் 

роЙродாро░рогрод்родிро▒்роХு, 87346 x 99999, роЗродро▒்роХு ро╡ிроЯைроХрог்роЯுрокிроЯிроХ்роХ роОро╡்ро╡ро│ро╡ு роиேро░роо் роЖроХுроо்? роТро░ு роЪிро▓ ро╡ிроиாроЯிроХро│ிро▓் роЗро╡்ро╡ро│ро╡ு рокெро░ிроп роХрогроХ்роХை роОро│ிродாроХрок் рокோроЯ рооுроЯிропுроо். роЪுро╡ாро░ро╕்ропрооாроХ роЗро░ுроХ்роХிро▒родро▓்ро▓ро╡ா? роЙроЩ்роХро│் роХுро┤рои்родைроХро│ுроХ்роХு роЗрои்род ро╡ிрод்родிропாроЪрооாрой роХро▒்ро▒ро▓் ро╡ாроп்рок்рокை роПро▒்рокроЯுрод்родிроХ்роХொроЯுроЩ்роХро│்.

роХுро┤рои்родைроХро│ிрой் рооூро│ைрод்родிро▒рой் ро╡ро│ро░்роЪ்роЪி роЕродிроХро░ிроХ்роХ рокропிро▒்роЪி, ро╡ேродிроХ் рооேрод்ро╕் (Vedic Maths), роЕрокாроХро╕் роОрой рооிроХ ро╡ிрод்родிропாроЪрооாрой рокாроЯрод் родிроЯ்роЯроЩ்роХро│ோроЯு, роЗро│роо் ро╡ропродு рооாрогро╡ро░்роХро│ுроХ்роХு рооிроХ роОро│ிродாроХ, роЪுро╡ாро░ро╕்ропрооாроХроХ் роХрогроХ்роХுрок் рокாроЯроо் роХро▒்ро▒ுроХ்роХொроЯுроХ்роХிро▒ாро░் 

роХрогроХ்роХிро▓் рокுро▓ிропாроХ рооாро▒ ро╡ро▓ுро╡ாрой роЕроЯிрод்родро│рооாроХ ро╡ிро│роЩ்роХுроо் роЗрои்род ро╡роХுрок்рокுроХро│். 4-роо் ро╡роХுрок்рокு рооுродро▓் 9-роо் ро╡роХுрок்рокுро╡ро░ை рокроЯிроХ்роХுроо் рооாрогро╡ро░்роХро│் роЗрои்родрок் рокропிро▒்роЪிропிро▓் рокроЩ்роХேро▒்роХро▓ாроо். 
рокோроЯ்роЯிрод் родேро░்ро╡ு рокோрой்ро▒ро╡ро▒்ро▒ை роОродிро░்роХொро│்ро│ роЙродро╡ுроо்

My favourite subject is Maths

My favourite subject is Maths

My favourite subject is Maths as I love to play with numbers and solve mathematical problems.

Maths gives me a lot of satisfaction and boosts my energy and thinking capacity while studying.

I love the number game and can solve problems for hours at a stretch without getting bored.

My Maths teacher also teaches us various tricks to solve mathematical sums accurately and with speed.

The best part about Maths is that I don’t need to memorise or mug up everything, like a parrot.

Maths is a very interesting subject and does not require retaining a lot of information in my mind.

Among all arithmetical exercises, I love solving addition, subtraction, multiplication and division problems.

The more I practice, the better I become at solving various arithmetical questions.

It is a captivating subject and plays an important role in our daily lives.

Finally, Maths is also a scoring subject and with proper practice, it becomes easier to score good marks in it.

Traversable

Importance of odd and even numbers.



Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
We can trace over the edges exactly once in diagrams (i), (ii), (iii) and (vii).
We cannot trace over the edges exactly once in diagrams (iv), (v) and (vi).
Let us analyze why it is not traceable (or traversable).
In figure (i) A, B, C and D are called vertices. 
Like these the vertices in diagrams(ii) to (vii) are as follows: 
(ii) P, Q, R, S (iii) K, L, M, N, O (iv) E, F, G, H, I (v) J, K,L, M, N (vi) S, T, U, V, W (vii) I, J, K, L, M.

Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
In figure (i), AB and AD meet at A. Hence, A is an even vertex, 
In figure (i), there are 4 even vertices (all are even vertices). 
In figure (i), we can start at any vertex and we end at the same vertex. It is traversable. 

Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
In figure (ii), QP, RP, SP meet at P. Hence, P is an odd vertex. 
In figure (ii), P and R odd vertices. Q and S are even vertices.
In figure (ii) we have to start at anyone of the odd vertices P or R. 
We end in the opposite vertex (ii) (starting point P and ending in R or starting with R and ending in P). It is traversable.  
 
Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
In fig (iii), K and L are odd vertices. M, O, N are even vertices.
In figure (iii) we have to start at anyone of the odd vertices K or L. 
 In (iii), Point of start K end point L. Point of start L, end K.
 It is traversable. 
Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
In fig. (iv), F is the only even vertex. E, I, G, H are odd vertices. 
In figure (iv) there are 4 odd vertices, We find the diagram is not traversable.


Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
In fig. (v), K is the only even vertex. J, L, M, N are odd vertices. 
In figure (v) there are 4 odd vertices, We find the diagram is not traversable.


Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
In figure (vi) at W, SW, TW, UW, VW meet at W. Hence, it is an even vertex
In fig. (vi),S, T, U, V are odd vertices and W is the only even vertex. 
In figure (vi) there are 4 odd vertices, We find the diagram is not traversable. 
Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
In (vii), I, J, K, L and M are all even vertices.
 Further, it is traversable.
Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
In figure (i), AB and AD meet at A. Hence, A is an even vertex, 
In figure (ii), QP,RP, SP meet at P. Hence, P is an odd vertex. 
In figure (vi) at W, SW, TW, UW, VW meet at W. Hence, it is an even vertex
In figure (i), there are 4 even vertices (all are even vertices). 
In figure (ii), P and R odd vertices. Q and S are even vertices. 
In fig (iii), K and L are odd vertices. M, O, N are even vertices. 
In fig. (iv), F is the only even vertex. E, I, G, H are odd vertices. 
In fig. (v), K is the only even vertex. J, L, M, N are odd vertices. 
In fig. (vi),S, T, U, V are odd vertices and W is the only even vertex. 
In (vii), I, J, K, L and M are all even vertices.

Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
In figure (i), we can start at any vertex and we end at the same vertex. It is traversable. 
In figures (ii) and (iii) we have to start at anyone of the odd vertices P or R. 
We end in the opposite vertex (ii) (starting point P and ending in R or starting with R and ending in P). 
In (iii), Point of start K end point L. Point of start L, end K.
In figures (iv), (v) and (vi) there are 4 odd vertices, We find these diagrams are not traversable. 
In figure (vii), all are even vertices. Further, it is traversable.
 
These diagrams are called NETWORKS.

Without removing the pencil from the paper and without tracing an edge more than once (traversable) can we draw the diagrams?
Now, we can draw the following conclusions:
(i) A network with no odd (or all even) vertices is traversable. We may start from any vertex and we will end where we began.
(ii) A network with exactly 2 odd vertices is traversable. We must start at either of the odd vertices and finish at the other.
(iii) A network with more than 2 odd vertices, is not traversable. 
From this, we can see the importance of odd and even numbers.


Find out whether Traversable or not? If it is traversable draw without removing the pencil & without tracing edge more than once 


Find out whether Traversable or not? If it is traversable draw without removing the pencil & without tracing edge more than once 



Play with your Friends Kutties! ЁЯСН
All the best! 
Thank YouЁЯЩПЁЯП╗

Youtube link : click here


WORKSHEET ch1 class 6

WORKSHEET - Number pattern 1)  1,3,5,7, ________, ___________,  _______ Rule- ________________ 2)  2,4,6,8,________, ___________,  _______ R...