Friday, March 22, 2024

ANSWER KEY CLASS 8 PRACTICE TEST FOR 6 CHAPTERS

 Practice  Test 

Class- 8                                            Subject - Maths                                     Marks : 45 marks  

Chapters - Time and Work, Percentage, Profit and Loss,Algebraic Expressions, Direct and Inverse variations and Linear Equations in one variable.                                    


Section A each carries 3 marks

  1. A tricycle is sold at a gain of 16%. Had it been sold for Rs 100 more, the gain would have been 20%. Find the C.P. of the tricycle.

Solution:  the cost price of tricycle be = Rs x

Selling price of the tricycle be = Rs x

 Gain% = 16% of 100 = 16/100

Selling price of tricycle = x + x×16/100

= (100x+16x)/100

= 116x/100

= 29x/25

 if selling price is Rs 100 more

New Selling price = 29x/25 + 100

 Gain% = 20%

Gain % = (gain/cost price) × 100 [by using Gain = SP – CP]

20 = [((29x/25)+100) – x] / x × 100

20x/100 = (29x + 2500 – 25x)/25

x/5 = (29x + 2500 – 25x)/25

5x = 4x + 2500

x = 2500

∴ Cost price of tricycle is Rs 2500

  1. Ramesh bought two boxes for Rs 1300. He sold one box at a profit of 20% and the other box at a loss of 12%. If the selling price of both boxes is the same, find the cost price of each box.

Solution : 

C.P of two boxes = Rs 1300

 let C.P of one box be Rs x

C.P of other box = Rs 1300 – x

S.P of first box = x + x × ${20}/{100}$  = x + ${x}/{5}$ = Rs 6x/5

S.P of second box = (1300 – x) – (1300 – x) × 12/100

= Rs (28600 – 22x)/25

6x/5 = (28600 – 22x)/25

150x = 28600 × 5 – 110x

150x + 110x = 28600 × 5

260x = 28600 × 5

x = (28600 × 5)/260 = 550

∴ C.P of first box = Rs. 550

C.P of second box = Rs 1300 – Rs 550 = Rs 750

3.Balanced diet should contain 12% of proteins, 25% of fats and 63% of carbohydrates. If a child needs 2600 calories in this food daily, find in calories the amount of each of these in his daily food intake.

Solution:

Amount of calorie daily needed = 2600 calorie

Amount of protein needed = 12% of 2600

= (12/100) × 2600

= 312 calorie

Amount of fats needed = 25% of 2600

= (25/100) × 2600

= 650 calorie

Amount of carbohydrate needed = 63% of 2600

= (63/100) × 2600

= 1638 calorie

4. A motorist travelled 122 kilometers before his first stop. If he had 10%of his journey to complete at this point, how long was the total ride?

Solution:

 details are,

Motorist total distance travelled before first stop = 122 km

Journey completed at first stop = 10 %

 total ride to be travelled be ‘x’ km

(x/100) × 10 = 122

x/100 = 122/10

x = (122 × 100)/10

= 1220 km

∴ Motorist total ride is 1220 km

5.A, B and C working together can do a piece of work in 8 hours. A alone can do it in 20 hours and B alone can do it in 24 hours. In how many hours will C alone do the same work?


Solution:


A can do a piece of work in 20 hours


Work done by A in 1 hour = 1/20


B can do same work in = 24 hours


Work done by B in 1 hour = 1/24


A, B and C working together can do the same work in = 8 hours


Work done by A, B, C together in 1 hour = 1/8


Work done by C in 1 hour = (work done by A,B and C in 1 hour) – ( work done by A And B in 1 hr.)


= 1/8 – (1/20 + 1/24)


= 1/8 – 11/120


= (15-11)/120 (by taking LCM for 8 and 120 which is 120)


= 4/120


= 1/30

∴ Time taken by C alone to complete the work = 1/(1/30) = 30hours.


6.A and B can polish the floors of a building in 10 days. A alone can do ¼th of it in 12 days. In how many days can B alone polish the floor?

Solution:

A and B can polish a building in = 10 days


Work done by A and B in one day = 1/10


A alone can do 1/4th of work in = 12 days


A’s 1 day work = 1/(4×12) = 1/48


B’s 1 day work = (A+B)’s 1 day work – A’s 1 day work


= 1/10 – 1/48


= (48-10)/480 (by taking LCM for 10 and 48 which is 480)


= 38/480 = 19/240


∴ B alone can polish the floor in = 1/(19/240) = 240/19 =12 12/19 days


7. A cistern has two inlets A and B which can fill it in 12 hours and 15 hours respectively. An outlet can empty the full cistern in 10 hours. If all the three pipes are opened together in the empty cistern, how much time will they take to fill the cistern completely?


Solution:


Inlet A can fill the cistern in = 12 hours


Inlet A can fill the cistern in 1 hour = 1/12


Inlet B can fill the cistern in = 15 hours


Inlet B can fill the cistern in 1 hour = 1/15


Outlet pipe can empty the cistern in = 10 hours


Outlet pipe can empty the cistern in 1 hour = 1/10


 (1/12 + 1/15) – 1/10


= (9/60) – 1/10


= (9-6)/60


= 3/60


= 1/20 part


∴ When all 3 pipes are opened together to empty the cistern, time taken to fill the cistern completly = 1/(1/20) = 20 hours

8.The amount of extension in an elastic string varies directly as the weight hung on it. If a weight of 150 gm produces an extension of 2.9 cm, then what weight would produce an extension of 17.4 cm?


Solution:

Extension (cm) 2.9 17.4

Weight (gm) 150 x

2.9/150 = 17.4/x


2.9x = 150(17.4)


2.9x = 2610


x = 2610/2.9


= 900


∴ 900gm of weight is produced for an extension of 17.4cm

9.In a hostel of 50 girls, there are food provisions for 40 days. If 30 more girls join the hostel, how long will these provisions last?


Solution: 

Total number of girls are 50 + 30 = 80 girls


Girls 50 80

Time (days) 40 x

We know k = xy


50 × 40 = 80 × x


x = (50×40)/80 = 25


∴ The food provisions lasts for 25 days if 30 more girls are joined.

10. Three spraying machines working together can finish painting a house in 60 minutes. How long will it take for 5 machines of the same capacity to do the same job?


Solution: 

Time (min) 60 x

No. of spraying machines 3 5

60 × 3 = x × 5


x = (60×3)/5


= 36


∴ 36 minutes is required to do the same job by 5 spraying machines of the same capacity.

11. Find the following products and verify the results for x = -1, y = -2: (3x – 5y) (x + y)

Solution:


(3x – 5y) × (x + y)


(3x – 5y) × (x + y)


x (3x – 5y) + y (3x – 5y)


3x2 – 5xy + 3xy – 5y2


3x2 – 2xy – 5y2


3x2 – 2xy – 5y2


3 (-1)2 – 2 (-1) (-2) – 5 (-2)2


3 – 4 – 20 = – 21


∴ the  expression is verified.


12. Simplify:  x² (x + 2y) (x – 3y)

Solution:


x2 (x + 2y) (x – 3y)


x2 (x2 – 3xy + 2xy – 3y2)


x2 (x2 – xy – 6y2)


x4 – x3y – 6x2y2


13. The numerator of a rational number is 3 less than the denominator. If the denominator is increased by 5 and the numerator by 2, we get the rational number 1/2. Find the rational number.


Solution:

Le the denominator be x and the numerator be (x – 3)

= (x – 3)/x


(x – 3 + 2)/(x + 5) = 1/2


(x – 1)/(x + 5) = 1/2


2(x – 1) = x + 5


2x – 2 = x + 5


2x – x = 2 + 5


x = 7


∴ Denominator is x = 7, numerator is (x – 3) = 7 – 3 = 4


And the fraction = numerator/denominator = 4/7



14. I have Rs 1000 in ten and five rupee notes. If the number of ten rupee notes that I have is ten more than the number of five rupee notes, how many notes do I have in each denomination?


Solution:


Let the number of five rupee notes be x


The number of ten rupee notes be (x + 10)


Amount due to five rupee notes = 5 × x = 5x


Amount due to ten rupee notes = 10 (x + 10) = 10x + 100


The total amount = Rs 1000


5x + 10x +100 = 1000


15x = 900


x = 900/15


= 60


∴ the number of five rupee notes is x = 60


The number of ten rupee notes is x + 10 = 60+10 = 70


15. I am currently 5 times as old as my son. In 6 years time, I will be three times as old as he will be then. What are our ages now?


Solution:


Let the present son’s age be x years


Present father’s age be 5x years


Son’s age after 6 years = (x + 6) years


Fathers’ age after 6 years = (5x + 6) years


5x + 6 = 3(x + 6)


5x + 6 = 3x + 18


5x – 3x = 18 – 6


2x = 12


x = 12/2


= 6


∴ present son’s age is x = 6years


Present father’s age is 5x = 5(6) = 30years










Wednesday, March 20, 2024

CLASS 8 PRACTICE TEST FOR 6 CHAPTERS

Practice  Test 

Class- 8                                            Subject - Maths                                     Marks : 45 marks  

Chapters - Time and Work, Percentage, Profit and Loss,Algebraic Expressions, Direct and Inverse variations and Linear Equations in one variable.                                    


Section A each carries 3 marks

  1. A tricycle is sold at a gain of 16%. Had it been sold for Rs 100 more, the gain would have been 20%. Find the C.P. of the tricycle.

  2. Ramesh bought two boxes for Rs 1300. He sold one box at a profit of 20% and the other box at a loss of 12%. If the selling price of both boxes is the same, find the cost price of each box.

  3. Balanced diet should contain 12% of proteins, 25% of fats and 63% of carbohydrates. If a child needs 2600 calories in this food daily, find in calories the amount of each of these in his daily food intake.

  4. A motorist travelled 122 kilometers before his first stop. If he had 10%of his journey to complete at this point, how long was the total ride?

  5. A, B and C working together can do a piece of work in 8 hours. A alone can do it in 20 hours and B alone can do it in 24 hours. In how many hours will C alone do the same work?

  6. A and B can polish the floors of a building in 10 days. A alone can do ¼th of it in 12 days. In how many days can B alone polish the floor?

  7. A cistern has two inlets A and B which can fill it in 12 hours and 15 hours respectively. An outlet can empty the full cistern in 10 hours. If all the three pipes are opened together in the empty cistern, how much time will they take to fill the cistern completely?

  8. The amount of extension in an elastic string varies directly as the weight hung on it. If a weight of 150 gm produces an extension of 2.9 cm, then what weight would produce an extension of 17.4 cm?

  9. In a hostel of 50 girls, there are food provisions for 40 days. If 30 more girls join the hostel, how long will these provisions last?

  10. Three spraying machines working together can finish painting a house in 60 minutes. How long will it take for 5 machines of the same capacity to do the same job?

  11. Find the following products and verify the results for x = -1, y = -2: (3x – 5y) (x + y)

  12. Simplify:  x² (x + 2y) (x – 3y)

  13. The numerator of a rational number is 3 less than the denominator. If the denominator is increased by 5 and the numerator by 2, we get the rational number 1/2. Find the rational number.

  14. I have Rs 1000 in ten and five rupee notes. If the number of ten rupee notes that I have is ten more than the number of five rupee notes, how many notes do I have in each denomination?

  15. I am currently 5 times as old as my son. In 6 years time, I will be three times as old as he will be then. What are our ages now?


Tuesday, March 19, 2024

IB - GRADE 9 QUARTERLY REVIEW QUESTIONS

IB- GRADE 9 QUARTERLY REVIEW QUESTIONS

1. Which of the following describes the figure below?

Answer: B



2. Which one of the following gives the distance between the numbers-1 and 7? [A] 8 [B] 6 [c] -8 [D] -6

Distance=∣7−(−1)∣ 

Distance=∣7+1∣

Distance=∣7+1∣ 

Distance=∣8∣

So, the distance between -1 and 7 is 8 units.


ANSWER: A


3. If RS=38; and QS=86.4, find QR. [A] 38.4 [B]124.4 [C] 38 [D] 48.4

QR=QS−RS 

QR=86.4−38

QR=86.4−38 

QR=48.4



ANSWER = D



4. Solve: In the figure (not drawn to scale), (𝑀𝑂) ⃗ bisects ∠LMN, m ∠LMO=18x-34 and M ∠NMO=x+136. Solve for x and find m ∠ LMN [A] 6,44 [B]10,214 [C] 6,74 [D] 10, 292

(𝑀𝑂) ⃗ bisects ∠LMN, SO BY ANGLE BISECTOR THEOREM

m ∠LMO= M ∠NMO

18x-34 = x+136. 

18X-X = 136+34

17X=170

X=10

m ∠ LMO = 18X -34 = 18 X 10 -34 = 180 -34 = 146

M ∠NMO=x+136 = 10 + 136 =146

M ∠LMN= 146 + 146 = 292


ANSWER : D


5. If M is the midpoint of (𝑃𝑄) ̅ find the value of x. [A] 7 [B] 9 [C] 14 [D]-3

The midpoint formula for one-dimensional coordinates is:

M = (𝑃+𝑄)/2

2 = (−5+𝑋)/2

4 = −5+𝑋

X = 9


ANSWER: B

6. If∠A and ∠ B are supplementary angles and m ∠A = 3m ∠B find m ∠A and m ∠ B. [A] 120,60 [B] 67.5.22.5 [C] 60, 30 [D] 135,45

Given that m∠A=3m∠B, 

m∠A+m∠B=180°

3m∠B+m∠B=180 °

4m∠B=180 °

m∠B=180"°" /4

m∠B=45 °

m∠A=3m∠B 

m∠A=3×45 °

m∠A=135 °


ANSWER: D

7. In the figure shown, m ∠AED=108°. Which of the following statements is false? [A] ∠ BEC and and ∠ CED are adjacent angles. [B] ∠AEΞ’= 72° [C] ∠ AEB & ∠ DEC are vertical angles. [D] m ∠ BEC=72°


[A] ∠BEC and ∠CED are adjacent angles.

Adjacent angles are angles that share a common side and a common vertex but do not overlap. In the figure, ∠BEC and ∠CED share the common side EC and the common vertex E, but they do not overlap. So, this statement is true.

[B] ∠AEB = 72°

Since ∠AED = 108°, and ∠AED and ∠AEB are supplementary angles (forming a straight line), then ∠AEB = 180° - 108° = 72°. So, this statement is true.

[C] ∠AEB and ∠DEC are vertical angles.

Vertical angles are formed by intersecting lines and are opposite each other. In the figure, ∠AEB and ∠DEC are opposite each other. So, this statement is TRUE.

[D] m∠BEC = 72°

Since ∠AED = 108°, and ∠AED and ∠BEC are Vertically opposite angles then ∠BEC = ∠AED = 108° So, this statement is false.

ANSWER: D  the false statement is m ∠ BEC=72°

8. IF ∠ A and ∠ B are complementary angles and m∠A=5m∠B find m ∠A and m ∠B. [A] none of these [B] 144°,36° [C] 150°,30° [D] 72°,18 °

m∠A=5m∠B

m∠A + m∠B = 90° (COMPLEMENTARY ANGLES)

m∠B+5m∠B = 90°

6m∠B = 90°

m∠B =90/6

m∠B = 15°

m∠A=5m∠B

m∠A=5 X 15° = 75°

ANSWER: A

9. Find the distance between points P(-4, 2) and Q(5,-3) . [A] 2√17 [B] √106 [C] 10 [D] √2

The distance between points P(-4, 2) and Q(5,-3)

D = √(〖"(x2" −"x1" )〗^2+〖"(y2" −"y1" )〗^2 )

D = √(〖"(5" +4)〗^2+〖"(−" 3−2)〗^2 )

D = √(〖"(9" )〗^2+〖"(" −5)〗^2 )

D = √(81+25)

D = √106


ANSWER: B

10. Find the coordinates of the midpoint of the segment connecting       H(-2,-4) and K(-12,6) [A] (5,5) [B] (-7,1) (C) (10, 1) [D] (-14, 2)


H(-2,-4) and K(-12,6)

Mid point Formula

M = ("x2 + x1" /"2"  , ("y2 +y" 1)/"2"   )

M = (("−12 −" 2)/"2"  , "6−4" /"2"   )

M = ((−14)/"2"  , 2/"2"   )

M = (-7, 1)


ANSWER: B

11. Find the values of x, y, and z. [A] x=91 , y=89 z=66 [B] x=91 y=89 z = 49 [c] x=89 , y=91 z=66 [ D]x=89,y=91,z=49

∠BAC + ∠ABC = ∠BCD=Y

65° +26° = 91° =Y

X+Y=180° (LINEAR PAIR)

X+91° = 180°

X=180-91=89°

23° + Z+Y=180° (ANGLE SUM PROPERTY OF TRIANGLE)

23° + Z+91° =180°

Z = 180° - 114° = 66°


ANSWER: C




12. Find a and b. [A] a=33,57  [C] a=33,b=78 [B] a=45,b=57  [D] a=45, b = 33

∠C = 90° = 45 ° +45 °

b + 78 +45 = 180 ° (ANGLE SUM PROPERTY OF A TRIANGLE)

b = 180 ° - 123 °=57 °

LINEAR PAIR +78 = 180 °

LINEAR PAIR = 180 -78 ° = 102 °

102 °+a + 45 ° = 180 °

a = 180 – 147 = 33 °

ANSWER: A

13. In A ABC, m∠ A=64 ° and m ∠ C=52 °, Calculate m ∠ B. [A] 74 ° [B] 26 ° [C] 244 ° [D] 64 °

Angle sum property of a triangle ∠  B=180° −(64° +52°) 

∠  B=180° −116° 

∠  B=64°

ANSWER : D

14. Classify the triangle with sides of length 15, 15, and 15. [A] isosceles [B] scalene [C] straight [D] equilateral


A triangle with all three sides of equal length is called an equilateral triangle. So, a triangle with sides of length 15, 15, and 15 is an equilateral triangle.

ANSWER: D

15. Classify the triangle with angles measuring 84°, 65° and 31° [A] straight [B] obtuse[C] right [D] acute

this triangle is classified as an "acute triangle". An acute triangle is a triangle where all three angles are less than 90°.



ANSWER: D



16. Graph: y=5x+5



17. Find the slope of the line passing through the points A(-7,-3) and B(-4,5) [A] (−2)/11   [B]  13/8  [C]    3/( 8)   [D]    8/3

SLOPE = ("Change in"  𝑋)/("Change in"  π‘Œ) 

m = "y2 −y1" /"x2 −x1"   

m =  ("5+" 3)/(" −4+" 7) 

m= 8/3


ANSWER: D






18. Which of the lines is not perpendicular to 2x+y=8? [A] Y - 𝑋/2 = 6 [B] 2y-x=4 [C] X – 2Y =3 [D] 2x-y=4

Two lines are perpendicular if and only if the product of their slopes is -1. 

[2x + y = 8] [y = -2x + 8] M= -2

[A] Y - 𝑋/2 = 6  Y = 𝑋/2 + 6 M = 1/2 [B] 2y-x=4  Y =  𝑋/2 +2  M = 1/2

[C] X – 2Y =3  Y = 1/2X+ 3/2  M = 1/2 [D] 2x-y=4  Y= 2X+4  M = 2

the line not perpendicular to (2x+y=8) is line [D] (2x-y=4).


ANSWER: D

19. In the figure shown, PQ-18 centimeters ST=6 centimeters and m∠QRP=60°. Find m∠S [A]30° [B] 90° [C] 60° [D] 120°

m∠QRP=60°= m∠TRS (Vertically opposite angles)

m∠RTS=90°

Angle sum property of a triangle

m∠TRS + m∠RTS + m∠RST=180°

60°+90°+ m∠S =180° m∠S =180°- 150°

m∠S =30°


ANSWER: A



20. Two pentagons are similar. The perimeter of one is 42 m and that of the other is 105 m. Find the ratio of the sides of the pentagons. [A] 1:2.5 [B] 1:2 [C] 1:6.25 [D] 2:5

If two pentagons are similar, it means their corresponding sides are proportional. 

"Perimeter of smaller pentagon" /"Perimeter of LARGER pentagon"  ="Ratio of sides of smaller pentagon" /"Ratio of sides of LARGER pentagon" 

42/105=  𝑅/1

R = 2/5 = 1/2.5 

each side of the smaller pentagon is 2/5 times the length of the corresponding side of the larger pentagon.


RATIO = 1/2.5

ANSWER: A 1:2.5



21. In the figure shown, (𝐡𝐢) ̅||(𝐷𝐸) ̅, AB= 4 yards, BC=6 yards, AE=20 yards, and DE=24 yards. Find BD. [A] 15 yd [B] 12 yd [ C]5 yd [D]16yd


In similar triangles, corresponding sides are proportional.

𝑨𝑩/𝑨𝑫 = 𝑩π‘ͺ/𝑫𝑬

𝑨𝑩/(𝑨𝑩+𝑩𝑫) = 𝑩π‘ͺ/𝑫𝑬

πŸ’/(πŸ’+𝑩𝑫) = πŸ”/πŸπŸ’

πŸ’+𝑩𝑫 = 16

BD = 16-4 = 12 YARDS

ANSWER: B

22. Find the values of x and y. [A] x=8 ° y=86 ° [C] x =86°; y =94° [B]x=86 °;y=66 ° [D] x=8 °; y=94 °

LINEAR PAIR OF ANGLES

94°+Z = 180°

Z = 180 ° -94 °= 86°

IN AN ISOSCELES TRIANGLE, THE ANGLES OPPOSITE TO EQUAL SIDES ARE EQUAL.

Y = 86°

ANGLE SUM PROPERTY OF A TRIANGLE

86 °+86 °+X = 180 °

X = 180 °-172 °

X = 8 °


ANSWER: A

23. Which of these lengths could be the sides of a triangle? [A] 24 cm, 15 cm, 8 cm [B] 6 cm, 19 cm, 13 cm [C] 19 cm, 6 cm, 14 cm [D]15cm,24cm,7cm

The triangle inequality theorem, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.

[A] 24 cm, 15 cm, 8 cm:

24 + 15 > 8 (True)

24 + 8 > 15 (True)

15 + 8 > 24 (True) All three conditions are true, so these lengths can form a triangle.

[B] 6 cm, 19 cm, 13 cm:

6 + 19 > 13 (True)

6 + 13 > 19 (True)

19 + 13 > 6 (True) All three conditions are true, so these lengths can form a triangle.

[C] 19 cm, 6 cm, 14 cm:

19 + 6 > 14 (True)

19 + 14 > 6 (True)

6 + 14 > 19 (True) All three conditions are true, so these lengths can form a triangle.

[D] 15 cm, 24 cm, 7 cm:

15 + 24 > 7 (True)

15 + 7 > 24 (False)

24 + 7 > 15 (True) The second condition is false, so these lengths cannot form a triangle.

So, the options [A], [B], and [C] are valid triangles, but option [D] is not.

24. Find the largest side of the triangle, (not drawn to scale) [A] (𝐴𝐢) ̅ [B] (𝐡𝐢) ̅ [C] (𝐴𝐡) ̅ [D] not enough information

∠ BAC = 180°-82°=98°

SUM OF ALL THE ANGLES OF A TRIANGLE = 180°

∠ ABC = 180° – (98°+51°) = 180° – 149° = 31°

SIDE OPPOSITE TO LARGEST ANGLE IS LARGEST SIDE. 

SO SIDE OPPOSITE TO 98 ° IS  (𝐡𝐢) ̅


ANSWER: B

25. Find m∠1 in the figure below. (𝑃𝑄) ⃡ and (𝑅𝑆) ⃡  are parallel. [A] 61 ° [B]109 ° [C]29 ° [D] 119 °

Corresponding angles are equal = 61° 

Linear pair of angles 

 m ∠ 1 + 61 ° = 180 °

m ∠1= 180 °-61 °

m ∠1 = 119 °


ANSWER: D

26. Refer to the figure shown. Which of the following statements is true?

ANSWER: [B]

(𝑇𝑉) ̅ = (π‘‰π‘Š) ̅ (Given)

(π‘ˆπ‘‰) ̅ = (𝑉𝑋) ̅(given)

  ∠UVT = ∠ WVX (vertically opposite angles)

THEN  ∆TUV ≅ ∆WXV BY SAS



ANSWER: D

27. The triangles below are similar. Find the length of x. [A] 70 [B] 73.5 [C] 5.7 [D] 73

πŸ’πŸ—/πŸπŸ’ =  𝑿/𝟐𝟎 = πŸπŸ–/πŸ– 

 πŸ–/πŸπŸ“ = 𝟏𝟏/𝑿𝒁 

14*X = 49 X 20

X = 980/14

X = 70


ANSWER: A

28. Triangles ABC and XYZ are similar with ∠A = ∠ X and ∠ B\= ∠ Y. IF AB, BC, and AC are 8 inches, 9 inches, and 11 inches long, respectively, and YY is 15 inches long, find XZ. (Answer to the nearest tenth.) [A] 4.8 in. [B] 5.9 in. [C] 16.9 in. [D] 20.6 in.

AC corresponds to XZ and XY corresponds to AB

𝑨𝑩/𝑿𝒀 = 𝑨π‘ͺ/𝑿𝒁 

 πŸ–/πŸπŸ“ = 𝟏𝟏/𝑿𝒁 

8*XZ = 11 X 15

XZ = 165/8

XZ = 20.625

ANSWER: D

29. Solve for x : (𝒙+πŸ•)/πŸ” = πŸ•/πŸ— [A] -21 [B] (−πŸ•)/πŸ‘ [C] (−πŸ‘)/πŸ• [D] πŸ‘πŸ“/πŸ‘

(𝒙+πŸ•)/πŸ” = πŸ•/πŸ—

9(x+7) = 7 x6

9x+63=42

9x= 42-63

9x=-21

X = (−πŸ•)/πŸ‘ 


ANSWER: B

Find the geometric mean of 18 and 2 A 6 B 9 C 10 D 4


Geometric Mean of 2 and 18

If a and b are 2 numbers The geometric mean of a and b is √π‘Žπ‘

Applying the formula

GM of 2 and 18 is

√(2 x 18) =√36 =6


The answer : A



THANK YOU






Class 6 Mathematics - Chapter 8: Playing with Constructions

Class 6 Mathematics - Chapter 8: Playing with Constructions Class 6 Mathematics – NCERT (...