Friday, September 1, 2023

QUESTION BANK CLASS 6 PLAYING WITH NUMBERS

  QUESTION BANK  CLASS 6 PLAYING WITH NUMBERS

  • ______ is neither Prime nor Composite.

 a) 0
 b) 1                   
c) 2              
d) 4

  • Which of the following is the smallest composite number?

a) 2              

b) 3             

 c) 4              

d) 5

  • Which of the following is divisible by 5?

a) 222           

b) 453           

c) 400           

d) 528

  • The smallest composite number is _______________.  

a) 1              
b) 4                  
c) 2              
d) 0

  •   Which of the following is a prime number?

a) 12          
b) 37
c) 81           
d) 49

  • State –True or false    All prime numbers are odd.
  • State –True or false    All prime numbers are odd.
  • State –True or false    The product of two even numbers is always even.
  • State –True or false    All prime numbers are odd.
  • Fill in the Blanks: The smallest composite number is ______.
  • The smallest composite number is ______.
  • The greatest negative integer is ______.
  • A number which has only two factors is called a _______________.
  • LCM of 9 and 4 is _______
  • Fill in the Blanks:
  • Write the smallest digit in the blank space of number 4765_ 2 so that the number formed is divisible by 3.
  • Write first five multiples of 8.

    What is the greatest prime number between 1 and 20?
  • Write first three multiples of 11.
  • A number having only two factors is called _________ numbers
  • ) Find the common factors of 20 and 28.

    15) Find the LCM of 20,25 and 30.

  • The length, breadth and height of a room are 825 cm, 675 cm and 450 cm respectively.  Find the longest tape which can be measure the three dimensions of the room exactly.

  • Write first five multiples of 8.
  • Write all the factors of 20?
  • Write the prime factorization of 36
  • Find the least number which when divided by 6, 15 and 18, leave remainder 5 in each case.
  • Find the least number which when divided by 6, 15 and 18, leave remainder 5 in each case. (4M)
  • Find the HCF of 18,54 and 81(3M)
  • Determine the smallest 3-digit number which is exactly divisible by 6, 8 and 12.
  • Using divisibility tests, determine which of the following numbers are divisible by 11 and which or not:-        a)943207            b)145607
  • Find the HCF of 12,45 and 75 (3M)

EXTRA TRY THESE QUESTIONS

  • Find the possible factors of 45, 30 and 36.
  • Write all the factors of 68.
  •  Find the factors of 36.
  • Write first five multiples of 6
  • Observe that 2 × 3 + 1 = 7 is a prime number. Here, 1 has been added to a multiple of 2 to get a prime number. Can you find some more numbers of this type?
  • Write all the prime numbers less than 15.
  • Find the common factors of (a) 8, 20 (b) 9, 15
  • Find the common multiples of 3, 4 and 9.
  • Find the common factors of 75, 60 and 210 
  • Write the prime factorisations of 16, 28, 38.
  • Find the prime factorisation of 980
  • Find the HCF of the following: (i) 24 and 36 (ii) 15, 25 and 30 (iii) 8 and 12 (iv) 12, 16 and 28
  • Find the LCM of 12 and 18.
  • Find the LCM of 24 and 90. 
  • Find the LCM of 40, 48 and 45
  • Find the LCM of 20, 25 and 30.
  • Two tankers contain 850 litres and 680 litres of kerosene oil respectively. Find the maximum capacity of a container which can measure the kerosene oil of both the tankers when used an exact number of times.
  • In a morning walk, three persons step off together. Their steps measure 80 cm, 85 cm and 90 cm respectively. What is the minimum distance each should walk so that all can cover the same distance in complete steps?
  • Find the least number which when divided by 12, 16, 24 and 36 leaves a remainder 7 in each case. 

EXERCISE 3.1 

  • 1. Write all the factors of the following numbers : (a) 24 (b) 15 (c) 21 (d) 27 (e) 12 (f) 20 (g) 18 (h) 23 (i) 36
  • 2. Write first five multiples of : (a) 5 (b) 8 (c) 9 
  • 3. Match the items in column 1 with the items in column 2. 
  • Column 1 - Column 2 
  • (i) 35 - (a) Multiple of 8 
  • (ii) 15 -  (b) Multiple of 7 
  • (iii) 16 - (c) Multiple of 70 
  • (iv) 20 - (d) Factor of 30
  • (v) 25 - (e) Factor of 50 
  •                (f) Factor of 20 
  • 4. Find all the multiples of 9 upto 100.

EXERCISE 3.2 

  • 1. What is the sum of any two (a) Odd numbers? (b) Even numbers? 
  • 2. State whether the following statements are True or False: 
  • (a) The sum of three odd numbers is even. 
  • (b) The sum of two odd numbers and one even number is even. 
  • (c) The product of three odd numbers is odd. 
  • (d) If an even number is divided by 2, the quotient is always odd. 
  • (e) All prime numbers are odd. 
  • (f) Prime numbers do not have any factors. 
  • (g) Sum of two prime numbers is always even. 
  • (h) 2 is the only even prime number. 
  • (i) All even numbers are composite numbers. 
  • (j) The product of two even numbers is always even. 
  • 3. The numbers 13 and 31 are prime numbers. Both these numbers have same digits 1 and 3. Find such pairs of prime numbers upto 100. 
  • 4. Write down separately the prime and composite numbers less than 20. 
  • 5. What is the greatest prime number between 1 and 10? 
  • 6. Express the following as the sum of two odd primes. (a) 44 (b) 36 (c) 24 (d) 18 
  • 7. Give three pairs of prime numbers whose difference is 2. [Remark : Two prime numbers whose difference is 2 are called twin primes]. 
  • 8. Which of the following numbers are prime? (a) 23 (b) 51 (c) 37 (d) 26
    9. Write seven consecutive composite numbers less than 100 so that there is no prime number between them.
  • 10. Express each of the following numbers as the sum of three odd primes: (a) 21 (b) 31 (c) 53 (d) 61 
  • 11. Write five pairs of prime numbers less than 20 whose sum is divisible by 5. (Hint : 3+7 = 10)
  • 12. Fill in the blanks : 
  • (a) A number which has only two factors is called a ______. 
  • (b) A number which has more than two factors is called a ______. 
  • (c) 1 is neither ______ nor ______. 
  • (d) The smallest prime number is ______. 
  • (e) The smallest composite number is _____. 
  • (f) The smallest even number is ______.

EXERCISE 3.3 

  • 1. Using divisibility tests, determine which of the following numbers are divisible by 2; by 3; by 4; by 5; by 6; by 8; by 9; by 10 ; by 11 (say, yes or no):
  • 2. Using divisibility tests, determine which of the following numbers are divisible by 4; by 8: 
(a) 572 
(b) 726352 
(c) 5500 
(d) 6000 
(e) 12159 
(f) 14560 
(g) 21084 
(h) 31795072 
(i) 1700 
(j) 2150 
  • 3. Using divisibility tests, determine which of following numbers are divisible by 6: 
(a) 297144 
(b) 1258 
(c) 4335 
(d) 61233 
(e) 901352 
(f) 438750 
(g) 1790184 
(h) 12583 
(i) 639210 
(j) 17852
  •  4. Using divisibility tests, determine which of the following numbers are divisible by 11: 
(a) 5445 
(b) 10824 
(c) 7138965 
(d) 70169308 
(e) 10000001 
(f) 901153 
  • 5. Write the smallest digit and the greatest digit in the blank space of each of the following numbers so that the number formed is divisible by 3 : (a) __ 6724 (b) 4765 __ 2
6. Write a digit inthe blank space of each ofthefollowingnumbers so that the number formed is divisible by 11 : (a) 92 __ 389 (b) 8 __ 9484

EXERCISE 3.4 

  • 1. Find the common factors of : 
(a) 20 and 28 
(b) 15 and 25 
(c) 35 and 50 
(d) 56 and 120 
  • 2. Find the common factors of : 
(a) 4, 8 and 12 
(b) 5, 15 and 25 3.
  • Find first three common multiples of : (a) 6 and 8 (b) 12 and 18 
  • 4. Write all the numbers less than 100 which are common multiples of 3 and 4. 
  • 5. Which of the following numbers are co-prime? 
(a) 18 and 35 
(b) 15 and 37 
(c) 30 and 415 
(d) 17 and 68 
(e) 216 and 215 
(f) 81 and 16 
  • 6. A number is divisible by both 5 and 12. By which other number will that number be always divisible? 
  • 7. A number is divisible by 12. By what other numbers will that number be divisible?

EXERCISE 3.5 

  • 1. Which of the following statements are true? 
  • (a) If a number is divisible by 3, it must be divisible by 9. 
  • (b) If a number is divisible by 9, it must be divisible by 3. 
  • (c) A number is divisible by 18, if it is divisible by both 3 and 6. 
  • (d) If a number is divisible by 9 and 10 both, then it must be divisible by 90. 
  • (e) If two numbers are co-primes, at least one of them must be prime. 
  • (f) All numbers which are divisible by 4 must also be divisible by 8. 
  • (g) All numbers which are divisible by 8 must also be divisible by 4. 
  • (h) If a number exactly divides two numbers separately, it must exactly divide their sum. 
  • (i) If a number exactly divides the sum of two numbers, it must exactly divide the two numbers separately. 
  • 2. Here are two different factor trees for 60. Write the missing numbers. (a)  

 


  • 3. Which factors are not included in the prime factorisation of a composite number? 
  • 4. Write the greatest 4-digit number and express it in terms of its prime factors. 
  • 5. Write the smallest 5-digit number and express it in the form of its prime factors.
  •  6. Find all the prime factors of 1729 and arrange them in ascending order. Now state the relation, if any; between two consecutive prime factors. 
  • 7. The product of three consecutive numbers is always divisible by 6. Verify this statement with the help of some examples. 
  • 8. The sum of two consecutive odd numbers is divisible by 4. Verify this statement with the help of some examples. 
  • 9. In which of the following expressions, prime factorisation has been done? 
(a) 24 = 2 × 3 × 4 
(b) 56 = 7 × 2 × 2 × 2 
(c) 70 = 2 × 5 × 7 
(d) 54 = 2 × 3 × 9 
  • 10. Determine if 25110 is divisible by 45. [Hint : 5 and 9 are co-prime numbers. Test the divisibility of the number by 5 and 9]. 
  • 18 is divisible by both 2 and 3. It is also divisible by 2 × 3 = 6. Similarly, a number is divisible by both 4 and 6. Can we say that the number must also be divisible by 4 × 6 = 24? If not, give an example to justify your answer. 
  • 12. I am the smallest number, having four different prime factors. Can you find me?

EXERCISE 3.6 

  • 1. Find the HCF of the following numbers : 
(a) 18, 48 
(b) 30, 42 
(c) 18, 60 
(d) 27, 63 
(e) 36, 84 
(f) 34, 102 
(g) 70, 105, 175 
(h) 91, 112, 49 
(i) 18, 54, 81 
(j) 12, 45, 75 
  • 2. What is the HCF of two consecutive (a) numbers? (b) even numbers? (c) odd numbers?
  • 3. HCF of co-prime numbers 4 and 15 was found as follows by factorisation : 4 = 2 × 2 and 15 = 3 × 5 since there is no common prime factor, so HCF of 4 and 15 is 0. Is the answer correct? If not, what is the correct HCF?

EXERCISE 3.7 

  • 1. Renu purchases two bags of fertiliser of weights 75 kg and 69 kg. Find the maximum value of weight which can measure the weight of the fertiliser exact number of times. 
  • 2. Three boys step off together from the same spot. Their steps measure 63 cm, 70 cm and 77 cm respectively. What is the minimum distance each should cover so that all can cover the distance in complete steps? 
  • 3. The length, breadth and height of a room are 825 cm, 675 cm and 450 cm respectively. Find the longest tape which can measure the three dimensions of the room exactly. 
  • 4. Determine the smallest 3-digit number which is exactly divisible by 6, 8 and 12.
  • 5. Determine the greatest 3-digit number exactly divisible by 8, 10 and 12.
  • 6. The traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds respectively. If they change simultaneously at 7 a.m., at what time will they change simultaneously again? 
  • 7. Three tankers contain 403 litres, 434 litres and 465 litres of diesel respectively. Find the maximum capacity of a container that can measure the diesel of the three containers exact number of times. 
  • 8. Find the least number which when divided by 6, 15 and 18 leave remainder 5 in each case. 
  • 9. Find the smallest 4-digit number which is divisible by 18, 24 and 32. 
  • 10. Find the LCM of the following numbers : 
(a) 9 and 4 
(b) 12 and 5 
(c) 6 and 5 
(d) 15 and 4 Observe a common property in the obtained LCMs. Is LCM the product of two numbers in each case? 
  • 11. Find the LCM of the following numbers in which one number is the factor of the other. 
(a) 5, 20 
(b) 6, 18 
(c) 12, 48 
(d) 9, 45 What do you observe in the results obtained?

POINTS TO REMEMBER

  • (a) A factor of a number is an exact divisor of that number. 
  • (b) Every number is a factor of itself. 1 is a factor of every number. 
  • (c) Every factor of a number is less than or equal to the given number. 
  • (d) Every number is a multiple of each of its factors. 
  • (e) Every multiple of a given number is greater than or equal to that number. 
  • (f) Every number is a multiple of itself. 
  • 3.(a) The number other than 1, with only factors namely 1 and the number itself, is a prime number. 
  • Numbers that have more than two factors are called composite numbers. 
  • Number 1 is neither prime nor composite.
  • (b) The number 2 is the smallest prime number and is even. 
  • Every prime number other than 2 is odd. 
  • (c) Two numbers with only 1 as a common factor are called co-prime numbers. 
  • (d) If a number is divisible by another number then it is divisible by each of the factors of that number. 
  • (e) A number divisible by two co-prime numbers is divisible by their product also. 
  • 4. We have discussed how we can find just by looking at a number, whether it is divisible by small numbers 2,3,4,5,8,9 and 11. 
  • (a) Divisibility by 2,5 and 10 can be seen by just the last digit. 
  • (b) Divisibility by 3 and 9 is checked by finding the sum of all digits. 
  • c) Divisibility by 4 and 8 is checked by the last 2 and 3 digits respectively.
  • (d) Divisibility of 11 is checked by comparing the sum of digits at odd and even places. 
  •  if two numbers are divisible by a number then their sum and difference are also divisible by that number. 
  • (a) The Highest Common Factor (HCF) of two or more given numbers is the highest of their common factors.
  •  (b) The Lowest Common Multiple (LCM) of two or more given numbers is the lowest of their common multiples. 

Wednesday, August 30, 2023

QUESTION BANK CLASS 6 PRACTICAL GEOMETRY

   QUESTION BANK  CLASS 6 PRACTICAL GEOMETRY

QUESTION BANK CLASS 6 SYMMETRY

   QUESTION BANK  CLASS 6 SYMMETRY

QUESTION BANK CLASS 6 CASE BASED STUDY

   QUESTION BANK  CLASS 6 CASE BASED STUDY

CASE BASED STUDY-1

Cuisenaire Rods can represent various fractions, depending on the choice of the unit rod. 



For example, if the unit rod is brown, then the purple rod represents 1/2 . 

Use the Cuisenaire Rods in question 1 and 2.

  • What fraction is represented by the green rod if the blue rod is the unit rod?

 (a) 1/ 3          

(b) 2/3          

(c) ¾        

(d) 3/7 

  • If the dark green rod represents 3/4, what is the unit rod?

 (a) black          (b) brown          (c) dark green       (d) yellow

  • What fraction is represented by the yellow rod if the black rod is the unit rod?

(a) 5/7          

(b) 2/3          

(c) 2/5       

(d) 5/6

  • What is the unit rod if the purple rod represents 2/3?

(a) blue         

(b) black          

(c) dark green        

(d) brown

  • If the unit rod is the orange rod, what fraction is represented by the black rod?

(a) 7/10         

 (b) 1/4          

(c) 2/3       

 (d) 3/8

CASE BASED STUDY-2

CRICKET 

The 2011 ICC Cricket World Cup was the tenth Cricket World Cup. It was played in India, Sri Lanka, and Bangladesh (for the first time). India won the tournament, defeating Sri Lanka by 6 wickets in the final at Wankhede Stadium in Mumbai, thus becoming the first country to win the Cricket World Cup final on home soil. Runs scored by the batsman of both the teams in this match were as follows:

S.No

NAME OF SRI LANKAN BATSMAN

RUN SCORED

NO OF BOUNDARIES HIT

1

U. THARANGA

2

0

2

T. DILSHAN

33

3

3

K. SANGAKKARA

48

5

4

M. JAYAVARDENE

103

13

5

T. SAMARAWEERA

21

2

6

CK. KUPUGEDERA

1

0

7

N. KULASEKARA

32

6

8

T. PERERA

22

3

S.No

NAME OF INDIAN BATSMAN

RUN SCORED

NO OF BOUNDARIES HIT

1

VIRENDER SAHVAG

0

0

2

SACHIN TENDULKAR

18

2

3

GAUTAM GAMBHIR

97

9

4

VIRAT KOHLI

35

4

5

M.S. DHONI

91

8

6

YUVRAJ SINGH

21

2

  • Which team won 2011 cricket world cup final match?

(a) Sri Lanka 

(b) India 

(c) England 

(d) Australia

  • How many players of Indian team scored equal to smallest whole number?

(a) 2 

(b) 3 

(c) 4 

(d) 1

  • How many more runs M. S. Dhoni need to reach highest two digit number?

(a) 10 

(b) 9 

(c) 8 

(d) 7

  • Write the name of player of team India, who did not score boundary. _____
  • In Sri Lanka team, score of which player is predecessor of score of T. PARERA?

CASE BASED STUDY-3

In a village six fruit merchants sold the following number of fruit baskets in a particular season:
 

Observe this pictograph and answer the following questions: 
  • (a) Which merchant sold the maximum number of baskets?
  •  (b) How many fruit baskets were sold by Anwar? 
  • (c) The merchants who have sold 600 or more number of baskets are planning to buy a godown for the next season. Can you name them?

CASE BASED STUDY-4
Family tree Akash , decides to make his family tree on a wall . His family members are grandparents, father and mother, brother and sister. He wants to write their ages along with photos. On inquiry about the ages of his family members , he gets information such that
 
Q1. If present age of grandfather is 48 years then present age of Akash is a) 40 b)14 c) 4 d)none of these Q2. Write the expression for present age of grandmother. Q3. Write the Expression for ages of given family members.


s.no

Family member

Present ages

1

Sister

 

2

Father

 

3

Mother

 

s.no Family member Present ages
  • 1 Sister
  • 2 Father
  • 3 Mother

CASE BASED STUDY-5
Meeting
Meetings are the most effective way of making decisions and motivating participants. In meetings participants can contribute and share their thoughts and as a result, will feel more comfortable with the tasks.  A Teacher of school organizes a meeting with junior students, once in 3 weeks i.e.,in 21 
days and once in 4 weeks, i.e., in 28 days with senior students. In a meeting both type of students were given a project to prepare flowers with the use of a shiny paper. There were 456 flowers in a carton and 684 flowers in another carton of junior students and senior students respectively. If he takes a meeting with them together on 1st of July 2020.
  • Which one is more important to run an effective meeting:-
 (a)Limited Time Duration 
 (b)Set an Agenda
 (c)Limited number of participants
  • What is the purpose of conducting a meeting?
  • After how many days/week shall they be holding the meeting together?
  • What is the date of next meeting held together?
  • Find the maximum capacity of a carton which can hold the flower of either cartons in exact number of times?
CASE BASED STUDY-6
Baba shop rate list is given below. Read it carefully and answer the questions.
Things                     price: 
Apple:                  Rs. 40 per kg
Orange:               Rs. 30 per kg
Tooth brushes:   Rs. 10 for one
Pencils:                Rs. 1 for one
Note book:         Rs. 6 for one
Soap cakes:        Rs. 8 for one
  • 1. What is the price of 4 Tooth brushes?
  • 2. What is cost price of 2 kg Apple and 2 kg Oranges?
  • 3. What is the total price of 4 Note books and 4 pencils?
  • 4. How many grams in 1 kg?



WORKSHEET ch1 class 6

WORKSHEET - Number pattern 1)  1,3,5,7, ________, ___________,  _______ Rule- ________________ 2)  2,4,6,8,________, ___________,  _______ R...