Section A: Multiple Choice Questions (20 Questions)
1.
What is the expanded form of \((x + 4)(x + 3)\)?
a) \(x^2 + 7x + 12\)
b) \(x^2 + 12x + 7\)
c) \(x^2 + 7x + 7\)
d) \(x^2 + 12x + 12\)
Show Answer
a) \(x^2 + 7x + 12\)
Using distributive property: \((x+4)(x+3) = x(x+3) + 4(x+3) = x^2 + 3x + 4x + 12 = x^2 + 7x + 12\)
2.
The expression \((a - 7)^2\) equals:
a) \(a^2 - 49\)
b) \(a^2 - 14a + 49\)
c) \(a^2 + 14a + 49\)
d) \(a^2 - 7a + 49\)
Show Answer
b) \(a^2 - 14a + 49\)
Using identity: \((a-b)^2 = a^2 - 2ab + b^2\). Here \(b=7\), so \(a^2 - 2×a×7 + 49 = a^2 - 14a + 49\)
3.
Which identity is used to find \(98 \times 102\) quickly?
a) \((a + b)^2\)
b) \((a - b)^2\)
c) \((a + b)(a - b)\)
d) \(a(b + c)\)
Show Answer
c) \((a + b)(a - b)\)
\(98 \times 102 = (100-2)(100+2) = 100^2 - 2^2\). This uses difference of squares identity.
4.
The product \(45 \times 55\) can be written as:
a) \((50 - 5)(50 + 5)\)
b) \((40 + 5)(50 + 5)\)
c) \((50 + 5)^2\)
d) \((50 - 5)^2\)
Show Answer
a) \((50 - 5)(50 + 5)\)
\(45 = 50-5\) and \(55 = 50+5\), so \(45×55 = (50-5)(50+5)\)
5.
If \(a\) and \(b\) are integers, \((a - b)^2\) is always equal to:
a) \((b - a)^2\)
b) \(-(b - a)^2\)
c) \(a^2 - b^2\)
d) \(b^2 - a^2\)
Show Answer
a) \((b - a)^2\)
Squaring removes the sign: \((a-b)^2 = [-(b-a)]^2 = (b-a)^2\)
6.
The value of \(101^2\) using the identity is:
a) 10201
b) 10001
c) 10101
d) 11001
Show Answer
a) 10201
\(101^2 = (100+1)^2 = 100^2 + 2×100×1 + 1^2 = 10000 + 200 + 1 = 10201\)
7.
The expression \(3p(2q - 5)\) expands to:
a) \(6pq - 15p\)
b) \(6pq - 5\)
c) \(3p - 15q\)
d) \(6pq + 15p\)
Show Answer
a) \(6pq - 15p\)
\(3p(2q-5) = 3p×2q - 3p×5 = 6pq - 15p\)
8.
If the product of two numbers is \(ab\), and both are increased by 1, the new product is:
a) \(ab + 1\)
b) \(ab + a + b + 1\)
c) \(ab + a + b\)
d) \(ab + 2\)
Show Answer
b) \(ab + a + b + 1\)
\((a+1)(b+1) = ab + a + b + 1\)
9.
The product \((x + 2)(x - 2)\) simplifies to:
a) \(x^2 - 4\)
b) \(x^2 + 4\)
c) \(x^2 - 2\)
d) \(x^2 + 2x - 4\)
Show Answer
a) \(x^2 - 4\)
Using difference of squares: \((x+2)(x-2) = x^2 - 2^2 = x^2 - 4\)
10.
Which of these is NOT an identity?
a) \(a(b + c) = ab + ac\)
b) \(a^2 - b^2 = (a + b)(a - b)\)
c) \(a + b = b + a\)
d) \(a^2 + b^2 = (a + b)^2\)
Show Answer
d) \(a^2 + b^2 = (a + b)^2\)
\((a+b)^2 = a^2 + 2ab + b^2\), not \(a^2 + b^2\)
11.
The increase in \(23 \times 27\) if 27 is increased by 1 is:
Show Answer
a) 23
If second number increases by 1, product increases by first number
12.
The expression \((2x + 5)^2\) equals:
a) \(4x^2 + 25\)
b) \(4x^2 + 10x + 25\)
c) \(4x^2 + 20x + 25\)
d) \(4x^2 + 20x + 10\)
Show Answer
c) \(4x^2 + 20x + 25\)
\((2x+5)^2 = (2x)^2 + 2×2x×5 + 5^2 = 4x^2 + 20x + 25\)
13.
Which pattern follows \(2(a^2 + b^2) = (a+b)^2 + (a-b)^2\)?
a) Pattern 1 from the chapter
b) Pattern 2 from the chapter
c) Pattern for 11, 101, 1001
d) Coin triangle pattern
Show Answer
a) Pattern 1 from the chapter
Pattern 1 shows \(2(a^2+b^2) = (a+b)^2 + (a-b)^2\)
14.
The product \(3874 \times 11\) using distributive property is:
a) 42614
b) 42514
c) 42624
d) 42714
Show Answer
a) 42614
\(3874×11 = 3874×(10+1) = 38740 + 3874 = 42614\)
15.
If \(m + n = 10\) and \(mn = 21\), then \(m^2 + n^2 = ?\)
Show Answer
a) 58
\(m^2+n^2 = (m+n)^2 - 2mn = 100 - 42 = 58\)
16.
Which is equivalent to \(k^2 + 2k\)?
a) \((k+1)^2 - 1\)
b) \(k(k+1) + k\)
c) \(k(k+2)\)
d) All of these
Show Answer
d) All of these
All simplify to \(k^2 + 2k\)
17.
The product \((a + 3)(a - 4)\) expands to:
a) \(a^2 - a - 12\)
b) \(a^2 + a - 12\)
c) \(a^2 - 12\)
d) \(a^2 + 7a - 12\)
Show Answer
a) \(a^2 - a - 12\)
\((a+3)(a-4) = a^2 - 4a + 3a - 12 = a^2 - a - 12\)
18.
To multiply by 101 quickly, we write the number as:
a) \(\times (100 + 1)\)
b) \(\times (10 + 1)\)
c) \(\times 100 + 1\)
d) \(\times 101 + 0\)
Show Answer
a) \(\times (100 + 1)\)
\(101 = 100 + 1\), so use distributive property
19.
The expression \((x - y)^2 + (x + y)^2\) simplifies to:
a) \(2x^2 + 2y^2\)
b) \(x^2 + y^2\)
c) \(4xy\)
d) \(2xy\)
Show Answer
a) \(2x^2 + 2y^2\)
\((x-y)^2 + (x+y)^2 = (x^2-2xy+y^2) + (x^2+2xy+y^2) = 2x^2 + 2y^2\)
20.
Which method is NOT used in "Mind the Mistake"?
a) Correcting sign errors
b) Expanding brackets
c) Using Pythagorean theorem
d) Combining like terms
Show Answer
c) Using Pythagorean theorem
"Mind the Mistake" deals with algebraic errors, not geometry theorems
Section B: Assertion & Reasoning Questions (20 Questions)
1.
Assertion (A): \((a + b)^2 = a^2 + 2ab + b^2\) for all integers \(a, b\).
Reason (R): The distributive property holds for integers.
a) Both A and R are true and R explains A.
b) Both A and R are true but R does not explain A.
c) A is true but R is false.
d) A is false but R is true.
Show Answer
a) Both A and R are true and R explains A.
The distributive property is used to derive \((a+b)^2 = a^2 + 2ab + b^2\)
2.
A: \((a - b)^2\) and \((b - a)^2\) are equal.
R: Squaring a negative gives a positive.
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
Show Answer
a) Both true, R explains A.
\((a-b)^2 = [-(b-a)]^2 = (b-a)^2\) because square of negative is positive
3.
A: \(99 \times 101 = 9999\).
R: \(99 \times 101 = (100-1)(100+1) = 100^2 - 1^2\).
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
Show Answer
a) Both true, R explains A.
R shows the method using difference of squares identity
4.
A: The product \(23 \times 27\) increases by 23 if 27 is increased by 1.
R: \(a(b+1) = ab + a\).
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
Show Answer
a) Both true, R explains A.
R gives the general rule that explains A
5.
A: \(2(a^2 + b^2) = (a+b)^2 + (a-b)^2\) is an identity.
R: It follows from adding the two square identities.
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
Show Answer
a) Both true, R explains A.
Adding \((a+b)^2\) and \((a-b)^2\) gives \(2(a^2+b^2)\)
6.
A: \(3874 \times 101 = 391374\).
R: \(3874 \times 101 = 387400 + 3874\).
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
Show Answer
a) Both true, R explains A.
R shows the calculation method using distributive property
7.
A: \((x+2)(x+5) = x^2 + 7x + 10\).
R: Using distributive property: \(x(x+5) + 2(x+5)\).
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
Show Answer
a) Both true, R explains A.
R shows how to expand using distributive property to get A
8.
A: \((a+b)^2\) is always greater than \(a^2 + b^2\).
R: Because \(2ab\) is always positive.
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
Show Answer
d) A false, R true.
A is false because if a or b is negative, \(2ab\) can be negative. R is true about squares of negatives.
9.
A: The pattern \(k^2 + 2k\) can be written as \(k(k+2)\).
R: Both represent the same algebraic expression.
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
Show Answer
a) Both true, R explains A.
R explains why they are equivalent expressions
10.
A: The product of two numbers remains same if one is increased by 2 and other decreased by 2.
R: \((a+2)(b-2) = ab + 2b - 2a - 4\).
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
Show Answer
d) A false, R true.
A is false - product changes unless special case. R is true as expansion.
11.
A: \((a+b)(a-b) = a^2 - b^2\) for all real numbers.
R: This is the difference of squares identity.
Show Answer
a) Both true, R explains A.
R names the identity that A represents
12.
A: \(104^2 = 10816\).
R: \(104^2 = (100+4)^2 = 100^2 + 2×100×4 + 4^2\).
Show Answer
a) Both true, R explains A.
R shows the calculation using identity to get A
13.
A: The product decreases when one number increases by 1 and other decreases by 1 if \(b < a + 1\).
R: \((a+1)(b-1) = ab + b - a - 1\).
Show Answer
a) Both true, R explains A.
From R: increase is \(b-a-1\), so product decreases if \(b-a-1 < 0\) i.e., \(b < a+1\)
14.
A: \(97^2 = 9409\).
R: \(97^2 = (100-3)^2 = 100^2 - 2×100×3 + 3^2\).
Show Answer
a) Both true, R explains A.
R shows calculation using \((a-b)^2\) identity
15.
A: \(2(5^2 + 6^2) = (11)^2 + (1)^2\).
R: Using identity \(2(a^2+b^2) = (a+b)^2 + (a-b)^2\) with \(a=6,b=5\).
Show Answer
a) Both true, R explains A.
R applies the pattern identity to verify A
16.
A: \((a+b)^2 - (a-b)^2 = 4ab\).
R: Subtracting the two square identities gives this result.
Show Answer
a) Both true, R explains A.
R explains how to derive A from known identities
17.
A: \((x+1)^3 = x^3 + 3x^2 + 3x + 1\).
R: \((x+1)^3 = (x+1)(x+1)^2 = (x+1)(x^2+2x+1)\).
Show Answer
a) Both true, R explains A.
R shows the expansion steps to get A
18.
A: The distributive property can be used for subtraction: \(a(b-c) = ab - ac\).
R: Subtraction is adding the negative: \(a(b-c) = a[b + (-c)]\).
Show Answer
a) Both true, R explains A.
R explains why distributive property works for subtraction
19.
A: \(73^2 = 5329\).
R: \(73^2 = (70+3)^2 = 70^2 + 2×70×3 + 3^2\).
Show Answer
a) Both true, R explains A.
R shows the decomposition method to calculate square
20.
A: The product \(46 \times 54\) is 2484.
R: \(46 \times 54 = (50-4)(50+4) = 50^2 - 4^2\).
Show Answer
a) Both true, R explains A.
R uses difference of squares to calculate product efficiently
Section C: True/False Questions (10 Questions)
1.
\((p + q)^2 = p^2 + q^2\)
Show Answer
False
Correct identity: \((p+q)^2 = p^2 + 2pq + q^2\)
2.
\((a - b)^2 = (b - a)^2\)
Show Answer
True
Squaring removes the sign difference
3.
\(a(b + c) = ab + ac\) for all real numbers
Show Answer
True
This is the distributive property
4.
\(11 \times 12 = 132\) can be found using \(10 \times 12 + 1 \times 12\)
Show Answer
True
\(11 \times 12 = (10+1) \times 12 = 10 \times 12 + 1 \times 12 = 120 + 12 = 132\)
5.
\((x + 3)(x - 3) = x^2 - 9\)
Show Answer
True
Difference of squares: \((x+3)(x-3) = x^2 - 3^2 = x^2 - 9\)
6.
\(2(a^2 + b^2) = (a+b)^2 + (a-b)^2\)
Show Answer
True
Adding the two square identities gives this result
7.
The product \(23 \times 27\) increases by 50 if both numbers increase by 1
Show Answer
False
Increase is \(a + b + 1 = 23 + 27 + 1 = 51\), not 50
8.
\(101^2 = 10201\)
Show Answer
True
\((100+1)^2 = 10000 + 200 + 1 = 10201\)
9.
\(k^2 + 2k = (k+1)^2 - 1\)
Show Answer
True
\((k+1)^2 - 1 = k^2 + 2k + 1 - 1 = k^2 + 2k\)
10.
\((a+b)(a-b) = a^2 + b^2\)
Show Answer
False
Should be \(a^2 - b^2\)
Section D: Short Answer I (2 Marks × 15 Questions)
1.
Expand: \((3x + 2)(x + 5)\)
Show Answer
\(3x^2 + 17x + 10\)
\((3x+2)(x+5) = 3x(x+5) + 2(x+5) = 3x^2 + 15x + 2x + 10 = 3x^2 + 17x + 10\)
2.
Find \(96^2\) using \((a - b)^2\) identity.
Show Answer
9216
\(96^2 = (100-4)^2 = 100^2 - 2×100×4 + 4^2 = 10000 - 800 + 16 = 9216\)
3.
Simplify: \(4a(3b - 2) + 5a\)
Show Answer
\(12ab - 3a\)
\(4a(3b-2) + 5a = 12ab - 8a + 5a = 12ab - 3a\)
4.
How much does \(23 \times 27\) increase if 23 is increased by 1?
Show Answer
27
When first number increases by 1, product increases by second number
5.
Verify \(2(a^2 + b^2) = (a+b)^2 + (a-b)^2\) for \(a=5, b=3\).
Show Answer
LHS: \(2(25+9)=68\), RHS: \((8)^2 + (2)^2 = 64+4=68\) ✓
Both sides equal 68, identity verified
6.
Multiply \(48 \times 52\) using a suitable identity.
Show Answer
2496
\(48×52 = (50-2)(50+2) = 50^2 - 2^2 = 2500 - 4 = 2496\)
7.
Expand \((2m + 3n)^2\).
Show Answer
\(4m^2 + 12mn + 9n^2\)
\((2m+3n)^2 = (2m)^2 + 2×2m×3n + (3n)^2 = 4m^2 + 12mn + 9n^2\)
8.
Find \(999^2\) using \((1000 - 1)^2\).
Show Answer
998001
\(999^2 = (1000-1)^2 = 1000000 - 2000 + 1 = 998001\)
9.
Simplify: \((x+4)^2 - (x-4)^2\)
Show Answer
\(16x\)
\((x^2+8x+16) - (x^2-8x+16) = 16x\)
10.
Expand: \((a + b - c)(a + b + c)\)
Show Answer
\(a^2 + 2ab + b^2 - c^2\)
Consider \((a+b)\) as single term: \((a+b)^2 - c^2 = a^2+2ab+b^2-c^2\)
11.
Find the product: \(234 \times 11\) using distributive method.
Show Answer
2574
\(234×11 = 234×(10+1) = 2340 + 234 = 2574\)
12.
If \(a = 7, b = 3\), find \((a+b)^2 - (a-b)^2\).
Show Answer
84
\((10)^2 - (4)^2 = 100 - 16 = 84\) or using identity: \(4ab = 4×7×3 = 84\)
13.
Write \(k^2 + 2k\) in two other equivalent forms.
Show Answer
\((k+1)^2 - 1\) and \(k(k+2)\)
Both simplify to \(k^2 + 2k\)
14.
Expand: \((p - 8)(p + 8)\)
Show Answer
\(p^2 - 64\)
Difference of squares: \(p^2 - 8^2 = p^2 - 64\)
15.
Find \(73^2\) using \((70 + 3)^2\).
Show Answer
5329
\(73^2 = (70+3)^2 = 70^2 + 2×70×3 + 3^2 = 4900 + 420 + 9 = 5329\)
Section E: Short Answer II (3 Marks × 10 Questions)
1.
Expand \((a + b)(a^2 + 2ab + b^2)\) and simplify.
Show Answer
\(a^3 + 3a^2b + 3ab^2 + b^3\)
\((a+b)(a^2+2ab+b^2) = a(a^2+2ab+b^2) + b(a^2+2ab+b^2) = a^3 + 2a^2b + ab^2 + a^2b + 2ab^2 + b^3 = a^3 + 3a^2b + 3ab^2 + b^3\)
2.
Multiply \(3874 \times 101\) using distributive property in one line.
Show Answer
391374
\(3874 \times 101 = 3874 \times (100+1) = 387400 + 3874 = 391374\)
3.
Show geometrically that \((a+b)^2 = a^2 + 2ab + b^2\) (describe with diagram).
Show Answer
Draw square of side (a+b). It consists of: one square of side a (area a²), one square of side b (area b²), and two rectangles of sides a and b (each area ab). Total area = a² + b² + 2ab = (a+b)².
Geometric proof using area decomposition
4.
If \(x = 8, y = 3\), find the area of the shaded region from page 95.
Show Answer
25
Area = \((n-m)^2\) where n=8, m=3 gives \((8-3)^2 = 5^2 = 25\)
5.
Prove: \((m+n)^2 - 4mn = (n-m)^2\).
Show Answer
LHS: \(m^2+2mn+n^2 - 4mn = m^2 - 2mn + n^2 = (n-m)^2\)
Expanding and simplifying gives the identity
6.
Find three examples where product decreases when one number is increased by 1 and the other decreased by 1.
Show Answer
1. (2,8)→(3,7): 16→21 (actually increases)
2. (5,5)→(6,4): 25→24 (decreases)
3. (10,1)→(11,0): 10→0 (decreases)
Product decreases when \(b < a+1\)
7.
Verify Pattern 1: \(2(5^2 + 6^2) = (11)^2 + (1)^2\).
Show Answer
LHS: \(2(25+36)=122\), RHS: \(121+1=122\) ✓
Using identity \(2(a^2+b^2) = (a+b)^2 + (a-b)^2\) with a=6,b=5
8.
Expand \((a - b)(a^3 + a^2b + ab^2 + b^3)\) and find the pattern.
Show Answer
\(a^4 - b^4\)
Pattern: \((a-b)(a^n + a^{n-1}b + ... + b^n) = a^{n+1} - b^{n+1}\)
9.
Correct the mistake: \((5m + 6n)^2 = 25m^2 + 36n^2\).
Show Answer
Correct: \(25m^2 + 60mn + 36n^2\)
Missing middle term \(2×5m×6n = 60mn\)
10.
Use Identity 1C to find \(45 \times 55\).
Show Answer
2475
\(45×55 = (50-5)(50+5) = 50^2 - 5^2 = 2500 - 25 = 2475\)
Section F: Long Answer Questions (5 Marks × 10 Questions)
1.
Derive all three identities: \((a+b)^2, (a-b)^2, (a+b)(a-b)\) using distributive property.
Show Answer
1. \((a+b)^2 = (a+b)(a+b) = a(a+b) + b(a+b) = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2\)
2. \((a-b)^2 = (a-b)(a-b) = a(a-b) - b(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2\)
3. \((a+b)(a-b) = a(a-b) + b(a-b) = a^2 - ab + ba - b^2 = a^2 - b^2\)
All derived using distributive property \(a(b+c) = ab + ac\)
2.
A park has two square green plots each of side \(g\) and a walking path of width \(w\) around them. Write an expression for the tiled area.
Show Answer
Tiled area = \((2g+2w)^2 - 2g^2 = 4g^2 + 8gw + 4w^2 - 2g^2 = 2g^2 + 8gw + 4w^2\)
Total area minus green area gives tiled area
3.
For the pattern in "This Way or That Way" (p. 96), show that all four expressions simplify to \(k^2 + 2k\).
Show Answer
1. \((k+1)^2 - 1 = k^2 + 2k + 1 - 1 = k^2 + 2k\)
2. \(k^2 + 2k\) (given)
3. \(k(k+1) + k = k^2 + k + k = k^2 + 2k\)
4. \(k(k+2) = k^2 + 2k\)
All four methods give same algebraic expression
4.
Explain the method for fast multiplication by 11 and 101 with two examples each.
Show Answer
By 11: Multiply by (10+1): \(123×11 = 1230+123 = 1353\), \(456×11 = 4560+456 = 5016\)
By 101: Multiply by (100+1): \(123×101 = 12300+123 = 12423\), \(456×101 = 45600+456 = 46056\)
Use distributive property: \(a×11 = a×(10+1)\), \(a×101 = a×(100+1)\)
5.
From "Mind the Mistake," identify and correct any 5 errors with explanations.
Show Answer
1. \(-3p(-5p+2q) = 15p^2 - 6pq\) (not \(-3p+5p-2q\))
2. \(2(x-1)+3(x+4) = 2x-2+3x+12 = 5x+10\) (not \(5x+3\))
3. \(y+2(y+2) = y+2y+4 = 3y+4\) (not \((y+2)^2\))
4. \((5m+6n)^2 = 25m^2 + 60mn + 36n^2\) (not \(25m^2+36n^2\))
5. \(5w^2 + 6w\) cannot combine (not \(11w^2\))
Common errors: forgetting to multiply all terms, incorrect expansion of squares, combining unlike terms
6.
Prove algebraically that the diagonal products in a 2×2 calendar square differ by 7.
Show Answer
Numbers: \(a, a+1, a+7, a+8\)
Diagonal products: \(a(a+8) = a^2+8a\) and \((a+1)(a+7) = a^2+8a+7\)
Difference: \((a^2+8a+7) - (a^2+8a) = 7\)
The difference is always 7 regardless of \(a\)
7.
If a number leaves remainder 3 when divided by 7 and another leaves remainder 5, find remainders for their sum, difference, and product when divided by 7.
Show Answer
Let \(A = 7x+3\), \(B = 7y+5\)
Sum: \(A+B = 7(x+y) + 8 = 7(x+y+1) + 1\) → remainder 1
Difference: \(A-B = 7(x-y) - 2 = 7(x-y-1) + 5\) → remainder 5
Product: \(AB = (7x+3)(7y+5) = 49xy + 35x + 21y + 15 = 7(7xy+5x+3y+2) + 1\) → remainder 1
Using algebraic representation of numbers with remainders
8.
Show that \((6n+2)^2 - (4n+3)^2\) is 5 less than a perfect square.
Show Answer
\((6n+2)^2 - (4n+3)^2 = (10n+5)(2n-1) = 20n^2 - 5\)
Add 5: \(20n^2\) which is a perfect square when \(n\) is an integer
Using difference of squares and simplification
9.
Find \(406^2, 72^2, 145^2\) using suitable identities.
Show Answer
\(406^2 = (400+6)^2 = 160000 + 4800 + 36 = 164836\)
\(72^2 = (70+2)^2 = 4900 + 280 + 4 = 5184\)
\(145^2 = (150-5)^2 = 22500 - 1500 + 25 = 21025\)
Decompose numbers into easy-to-square parts
10.
Explore the coin triangle flipping problem: Find minimum moves for 15 coins and generalize for triangular number \(T_n\).
Show Answer
For triangle with \(T_n = n(n+1)/2\) coins:
- 3 coins (n=2): 1 move
- 6 coins (n=3): 2 moves
- 10 coins (n=4): 3 moves
- 15 coins (n=5): 5 moves
Pattern: Minimum moves = ⌊n/2⌋ for n>1
Triangular number pattern with practical problem-solving
Section G: Case-Based Questions (5 Cases × 4 Sub-Questions Each)
Case 1: Fast Multiplication Tricks
Rahul learns that the distributive property can be used to multiply numbers quickly. He sees the example: \( 3874 \times 11 = 3874 \times (10 + 1) = 38740 + 3874 = 42614 \). He also learns that for a 4-digit number \( dcba \): \( dcba \times 101 = dcba \times (100 + 1) = dcba00 + dcba \).
1.
Which property is Rahul using here?
a) Commutative property
b) Distributive property
c) Associative property
d) Identity property
Show Answer
b) Distributive property
Using \(a(b+c) = ab + ac\)
2.
What is \(495 \times 11\) using this method?
a) 5445
b) 5440
c) 4945
d) 4950
Show Answer
a) 5445
\(495 \times 11 = 495 \times (10+1) = 4950 + 495 = 5445\)
3.
Using the rule for multiplying by 101, what is \(3874 \times 101\)?
a) 391374
b) 387400
c) 391474
d) 387474
Show Answer
a) 391374
\(3874 \times 101 = 3874 \times (100+1) = 387400 + 3874 = 391374\)
4.
Which is NOT true about multiplying by 11?
a) You add the number to itself shifted left by one digit
b) It works for any number of digits
c) It only works for 2-digit numbers
d) It uses \( \times (10 + 1) \)
Show Answer
c) It only works for 2-digit numbers
The method works for numbers with any number of digits
Case 2: Calendar Number Patterns
In a calendar, Priya marks a 2×2 square of numbers. She labels the top-left number as \( a \), so the square becomes:
| \( a \) | \( a+1 \) |
| \( a+7 \) | \( a+8 \) |
1.
What is the difference between the diagonal products?
Show Answer
b) 7
\(a(a+8) - (a+1)(a+7) = a^2+8a - (a^2+8a+7) = -7\), absolute difference = 7
2.
For \( a = 9 \), what are the diagonal products?
a) 153 and 160
b) 144 and 153
c) 135 and 144
d) 126 and 135
Show Answer
a) 153 and 160
\(9×17=153\), \(10×16=160\)
3.
The algebraic expression for the difference of diagonal products is:
a) \((a+8)(a) - (a+1)(a+7)\)
b) \((a+1)(a+7) - a(a+8)\)
c) \(a(a+8) - (a+1)(a+7)\)
d) \((a+7)(a+8) - a(a+1)\)
Show Answer
c) \(a(a+8) - (a+1)(a+7)\)
This represents product of top-left & bottom-right minus product of top-right & bottom-left
4.
When simplified, this difference always equals:
Show Answer
b) 7
\(a(a+8) - (a+1)(a+7) = a^2+8a - (a^2+8a+7) = -7\), so absolute difference = 7
Case 3: Geometric Proof of Identities
A square of side length \( (m+n) \) is drawn. Four rectangles of dimensions \( m \times n \) are removed from the corners, leaving a smaller shaded square in the center.
1.
What is the area of the large square?
a) \( m^2 + n^2 \)
b) \( (m+n)^2 \)
c) \( m^2 + 2mn + n^2 \)
d) Both b and c
Show Answer
d) Both b and c
\((m+n)^2 = m^2+2mn+n^2\)
2.
What is the total area of the four removed rectangles?
a) \( mn \)
b) \( 2mn \)
c) \( 4mn \)
d) \( m^2n^2 \)
Show Answer
c) \( 4mn \)
Four rectangles each of area \( mn \)
3.
The area of the shaded square is:
a) \( (m-n)^2 \)
b) \( (n-m)^2 \)
c) \( m^2 + n^2 - 2mn \)
d) All of these
Show Answer
d) All of these
All are equivalent expressions
4.
If \( m = 3 \) and \( n = 7 \), what is the area of the shaded square?
Show Answer
a) 16
\((7-3)^2 = 4^2 = 16\)
Case 4: Algebraic Pattern Recognition
Anika observes this pattern in her notebook:
\( 2(2^2 + 1^2) = 3^2 + 1^2 \)
\( 2(3^2 + 1^2) = 4^2 + 2^2 \)
\( 2(5^2 + 3^2) = 8^2 + 2^2 \)
She realizes this follows the identity: \( 2(a^2 + b^2) = (a+b)^2 + (a-b)^2 \)
1.
For \( a = 6, b = 4 \), what is \( 2(a^2 + b^2) \)?
a) 100
b) 104
c) 124
d) 144
Show Answer
b) 104
\(2(36+16) = 2×52 = 104\)
2.
Using the identity, \( (a+b)^2 + (a-b)^2 \) for \( a=6, b=4 \) is:
a) 100 + 4
b) 104 + 4
c) 100 + 4
d) 104
Show Answer
d) 104
\((10)^2 + (2)^2 = 100 + 4 = 104\)
3.
Does this identity work for negative numbers? For \( a = -3, b = 5 \):
a) Yes, both sides equal 68
b) Yes, both sides equal 34
c) No, it only works for positive numbers
d) No, squares of negatives are positive
Show Answer
a) Yes, both sides equal 68
LHS: \(2(9+25)=68\), RHS: \((2)^2+(-8)^2=4+64=68\)
4.
Another identity in the same chapter is:
a) \( (a+b)^3 = a^3 + b^3 \)
b) \( a^2 - b^2 = (a+b)(a-b) \)
c) \( a(b+c) = ab + c \)
d) \( (a-b)^2 = a^2 + b^2 \)
Show Answer
b) \( a^2 - b^2 = (a+b)(a-b) \)
This is Identity 1C (difference of squares)
Case 5: Error Analysis in Algebra
Mr. Sharma gives his class these expansions to check:
1. \( (5m + 6n)^2 = 25m^2 + 36n^2 \)
2. \( ab^2 + a^2b + a^2b^2 = ab(a + b + ab) \)
3. \( -3p(-5p + 2q) = -3p + 5p - 2q \)
1.
What is the correct expansion of \( (5m + 6n)^2 \)?
a) \( 25m^2 + 36n^2 \)
b) \( 25m^2 + 60mn + 36n^2 \)
c) \( 5m^2 + 30mn + 6n^2 \)
d) \( 25m^2 + 30mn + 36n^2 \)
Show Answer
b) \( 25m^2 + 60mn + 36n^2 \)
Missing middle term \(2×5m×6n = 60mn\)
2.
The correct simplification of \( ab^2 + a^2b + a^2b^2 \) is:
a) \( ab(a + b + ab) \)
b) \( ab(b + a + ab) \)
c) \( ab(ab + a + b) \)
d) Cannot be factored further
Show Answer
b) \( ab(b + a + ab) \)
Factor \(ab\) from each term: \(ab(b + a + ab)\)
3.
The error in \( -3p(-5p + 2q) \) is:
a) Sign error
b) Forgot to multiply
c) Added instead of multiplied
d) All of these
Show Answer
d) All of these
Multiple errors: sign, multiplication, addition
4.
Which mistake is most common when expanding \( (a+b)^2 \)?
a) Writing \( a^2 + b^2 \)
b) Writing \( a^2 + 2ab - b^2 \)
c) Writing \( a^2 + ab + b^2 \)
d) Writing \( 2a + 2b \)
Show Answer
a) Writing \( a^2 + b^2 \)
Most common error is forgetting the middle term \(2ab\)