Showing posts with label Answer Key with Short Reasoning (for Chapter 3 – Number Play). Show all posts
Showing posts with label Answer Key with Short Reasoning (for Chapter 3 – Number Play). Show all posts

Sunday, August 17, 2025

Answer Key with Short Reasoning (for Chapter 3 – Number Play)

 

Answer Key with Short Reasoning (for Chapter 3 – Number Play)

1. MCQs (20)

  1. (a) 121 – Reads same forward and backward (palindrome).

  2. (a) 6174 – Kaprekar’s constant.

  3. (b) 324 – Sum of digits = 9, divisible by 9.

  4. (a) 18 – 1+0+8+9 = 18.

  5. (c) 625 – 25×25 = 625.

  6. (d) Both (a) & (c) – 121 and 484 are palindrome squares.

  7. (b) 6174 – Result of Kaprekar’s process.

  8. (d) 50 – Not a cube number.

  9. (b) 1 – Collatz Conjecture ends at 1.

  10. (c) 366 days – Leap year.

  11. (a) 18 – 1+8=9, 18 divisible by 9.

  12. (d) 1234 – Not a palindrome.

  13. (a) 8 – 8³ = 512.

  14. (c) 24 – LCM(8,12)=24.

  15. (b) 97 – Only prime among options.

  16. (c) Friday – 100÷7=14 remainder 2 → Monday+2=Wednesday. Oops correction: let’s recalc → If today Monday, after 100 days remainder 2 → Wednesday. Correct answer = Wednesday (not in options, revise Q).

  17. (a) 143 – Divisible by 11.

  18. (a) 30 – 2×3×5.

  19. (d) All of these – All palindromes.

  20. (c) 1729 – Ramanujan number.


2. Assertion–Reasoning (20)

  1. (a) Both true, R explains A.

  2. (a) Both true, R explains A.

  3. (a) Both true, R explains A.

  4. (c) A true, R false (4 not prime).

  5. (a) Both true, R explains A.

  6. (a) Both true, R explains A.

  7. (c) A false, R false (not all palindromes divisible by 11).

  8. (a) Both true, R explains A.

  9. (a) Both true, R explains A.

  10. (a) Both true, R explains A.

  11. (a) Both true, R explains A.

  12. (b) Both true, but R doesn’t fully explain.

  13. (c) A false, R true.

  14. (a) Both true, R explains A.

  15. (a) Both true, R explains A.

  16. (a) Both true, R explains A.

  17. (a) Both true, R explains A.

  18. (a) Both true, R explains A.

  19. (a) Both true, R explains A.

  20. (a) Both true, R explains A.


3. True or False (10)

  1. False – Not all palindromes divisible by 11.

  2. True – Digit reversal trick → 1089.

  3. False – Kaprekar’s constant = 6174.

  4. True – 6174 is Kaprekar’s number.

  5. True – Collatz ends at 1.

  6. True – Leap year has 366 days.

  7. False – Not every palindrome is square.

  8. True – 121 is palindrome & square.

  9. True – 1331 divisible by 11.

  10. False – 1001 = 7×11×13.


4. Short Answer I (15)

  1. 111, 121, 131 – All palindromes.

  2. 6174 – Kaprekar’s constant.

  3. 1+2+3+4 = 10.

  4. 18, 20 – Both divisible by digit sum.

  5. 324 ÷ 9 = 36 → Yes divisible.

  6. ∛216 = 6.

  7. a² + 2ab + b².

  8. LCM(6,8) = 24.

  9. Collatz: Any number → eventually 1.

  10. Monday+30 = Wednesday.

  11. 2,3,5,7,11.

  12. 11,22,33 etc.

  13. 15²=225.

  14. 7³=343.

  15. 1000 = 10³.


5. Short Answer II (10)

  1. 121 is 11² and reads same → palindrome & square.

  2. HCF(18,24)=6, LCM=72.

  3. Example: 3524 → 5432–2345 = 3087 … → 6174.

  4. 1331 ÷ 11=121 → divisible.

  5. 6→3→10→5→16→8→4→2→1.

  6. 12³=1728 using (a+b)³ expansion.

  7. 1+3+5+7+9=25=5².

  8. 498≈500, 52≈50 → 500×50=25000.

  9. 200÷7=28 r4 → Friday+4=Tuesday.

  10. Eg: 12 & 60 → HCF=12, LCM=60.


6. Long Answer (10)

  1. 3524 process → converges to 6174 (Kaprekar constant).

  2. 11 Collatz → 11→34→17→52→26→13→40→20→10→5→16→…→1.

  3. (n+1)² – n² = 2n+1 = sum of consecutive numbers.

  4. 20×15=300 tiles needed.

  5. Odd square remains odd, ex: 7²=49.

  6. 1729=10³+9³=12³+1³.

  7. 500÷7=71 r3 → Wednesday+3=Saturday.

  8. Any 2-digit number ab=10a+b → (10a+b)–(a+b)=9a → divisible by 9.

  9. 9261=21³ → cube root=21.

  10. Estimation saves time, e.g. 198≈200, quick calculations.


7. Case-Based Qs (5 Sets)

Case 1 (Kaprekar)
a) 5432 b) 2345 c) 3087 d) 6174.

Case 2 (Collatz)
a) 5 b) 16 c) Yes → 1 d) Conjecture states all numbers reach 1.

Case 3 (Calendar)
a) Tuesday b) Friday c) 11 years later d) 52 Sundays.

Case 4 (Estimation)
a) 200+100+300=600 b) 198+102+298=598 c) Difference=2 d) Saves time.

Case 5 (Number Games)
a) 132 b) 231–132=99 c) 9+9=18 d) Digits add to multiples of 9.


CLASS 6 CH-4 DATA HANDLING AND PRESENTATION NCERT SOLUTIONS GANITA PRAKASH

 CLASS 6 CH-4 DATA HANDLING AND PRESENTATION NCERT SOLUTIONS GANITA PRAKASH Any collection of facts, numbers, measures, observations or othe...