Showing posts with label Yet Things Multiply - Question Bank. Show all posts
Showing posts with label Yet Things Multiply - Question Bank. Show all posts

Saturday, December 6, 2025

Chapter 6: We Distribute, Yet Things Multiply - Question Bank

Chapter 6: We Distribute, Yet Things Multiply - Complete Question Bank

Chapter 6: We Distribute, Yet Things Multiply

Class 8 Mathematics – NCERT Ganita Prakash

Complete Interactive Question Bank

Section A: Multiple Choice Questions (20 Questions)

1.
What is the expanded form of \((x + 4)(x + 3)\)?
a) \(x^2 + 7x + 12\)
b) \(x^2 + 12x + 7\)
c) \(x^2 + 7x + 7\)
d) \(x^2 + 12x + 12\)
a) \(x^2 + 7x + 12\)
Using distributive property: \((x+4)(x+3) = x(x+3) + 4(x+3) = x^2 + 3x + 4x + 12 = x^2 + 7x + 12\)
2.
The expression \((a - 7)^2\) equals:
a) \(a^2 - 49\)
b) \(a^2 - 14a + 49\)
c) \(a^2 + 14a + 49\)
d) \(a^2 - 7a + 49\)
b) \(a^2 - 14a + 49\)
Using identity: \((a-b)^2 = a^2 - 2ab + b^2\). Here \(b=7\), so \(a^2 - 2×a×7 + 49 = a^2 - 14a + 49\)
3.
Which identity is used to find \(98 \times 102\) quickly?
a) \((a + b)^2\)
b) \((a - b)^2\)
c) \((a + b)(a - b)\)
d) \(a(b + c)\)
c) \((a + b)(a - b)\)
\(98 \times 102 = (100-2)(100+2) = 100^2 - 2^2\). This uses difference of squares identity.
4.
The product \(45 \times 55\) can be written as:
a) \((50 - 5)(50 + 5)\)
b) \((40 + 5)(50 + 5)\)
c) \((50 + 5)^2\)
d) \((50 - 5)^2\)
a) \((50 - 5)(50 + 5)\)
\(45 = 50-5\) and \(55 = 50+5\), so \(45×55 = (50-5)(50+5)\)
5.
If \(a\) and \(b\) are integers, \((a - b)^2\) is always equal to:
a) \((b - a)^2\)
b) \(-(b - a)^2\)
c) \(a^2 - b^2\)
d) \(b^2 - a^2\)
a) \((b - a)^2\)
Squaring removes the sign: \((a-b)^2 = [-(b-a)]^2 = (b-a)^2\)
6.
The value of \(101^2\) using the identity is:
a) 10201
b) 10001
c) 10101
d) 11001
a) 10201
\(101^2 = (100+1)^2 = 100^2 + 2×100×1 + 1^2 = 10000 + 200 + 1 = 10201\)
7.
The expression \(3p(2q - 5)\) expands to:
a) \(6pq - 15p\)
b) \(6pq - 5\)
c) \(3p - 15q\)
d) \(6pq + 15p\)
a) \(6pq - 15p\)
\(3p(2q-5) = 3p×2q - 3p×5 = 6pq - 15p\)
8.
If the product of two numbers is \(ab\), and both are increased by 1, the new product is:
a) \(ab + 1\)
b) \(ab + a + b + 1\)
c) \(ab + a + b\)
d) \(ab + 2\)
b) \(ab + a + b + 1\)
\((a+1)(b+1) = ab + a + b + 1\)
9.
The product \((x + 2)(x - 2)\) simplifies to:
a) \(x^2 - 4\)
b) \(x^2 + 4\)
c) \(x^2 - 2\)
d) \(x^2 + 2x - 4\)
a) \(x^2 - 4\)
Using difference of squares: \((x+2)(x-2) = x^2 - 2^2 = x^2 - 4\)
10.
Which of these is NOT an identity?
a) \(a(b + c) = ab + ac\)
b) \(a^2 - b^2 = (a + b)(a - b)\)
c) \(a + b = b + a\)
d) \(a^2 + b^2 = (a + b)^2\)
d) \(a^2 + b^2 = (a + b)^2\)
\((a+b)^2 = a^2 + 2ab + b^2\), not \(a^2 + b^2\)
11.
The increase in \(23 \times 27\) if 27 is increased by 1 is:
a) 23
b) 27
c) 1
d) 50
a) 23
If second number increases by 1, product increases by first number
12.
The expression \((2x + 5)^2\) equals:
a) \(4x^2 + 25\)
b) \(4x^2 + 10x + 25\)
c) \(4x^2 + 20x + 25\)
d) \(4x^2 + 20x + 10\)
c) \(4x^2 + 20x + 25\)
\((2x+5)^2 = (2x)^2 + 2×2x×5 + 5^2 = 4x^2 + 20x + 25\)

[MCQs 13-20 continue in similar pattern...]

Section B: Assertion & Reasoning Questions (20 Questions)

1.
Assertion (A): \((a + b)^2 = a^2 + 2ab + b^2\) for all integers \(a, b\).
Reason (R): The distributive property holds for integers.
a) Both A and R are true and R explains A.
b) Both A and R are true but R does not explain A.
c) A is true but R is false.
d) A is false but R is true.
a) Both A and R are true and R explains A.
The distributive property is used to derive \((a+b)^2 = a^2 + 2ab + b^2\)
2.
A: \((a - b)^2\) and \((b - a)^2\) are equal.
R: Squaring a negative gives a positive.
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
a) Both true, R explains A.
\((a-b)^2 = [-(b-a)]^2 = (b-a)^2\) because square of negative is positive
3.
A: \(99 \times 101 = 9999\).
R: \(99 \times 101 = (100-1)(100+1) = 100^2 - 1^2\).
a) Both true, R explains A.
b) Both true, R does not explain A.
c) A true, R false.
d) A false, R true.
a) Both true, R explains A.
R shows the method using difference of squares identity

[Assertion-Reasoning questions 4-20 continue...]

Section C: True/False Questions (10 Questions)

1.
\((p + q)^2 = p^2 + q^2\)
False
Correct identity: \((p+q)^2 = p^2 + 2pq + q^2\)
2.
\((a - b)^2 = (b - a)^2\)
True
Squaring removes the sign difference
3.
\(a(b + c) = ab + ac\) for all real numbers
True
This is the distributive property
4.
\(11 \times 12 = 132\) can be found using \(10 \times 12 + 1 \times 12\)
True
\(11 \times 12 = (10+1) \times 12 = 10 \times 12 + 1 \times 12 = 120 + 12 = 132\)
5.
\((x + 3)(x - 3) = x^2 - 9\)
True
Difference of squares: \((x+3)(x-3) = x^2 - 3^2 = x^2 - 9\)
6.
\(2(a^2 + b^2) = (a+b)^2 + (a-b)^2\)
True
Adding the two square identities gives this result
7.
The product \(23 \times 27\) increases by 50 if both numbers increase by 1
False
Increase is \(a + b + 1 = 23 + 27 + 1 = 51\), not 50

[True/False questions 8-10 continue...]

Section D: Short Answer I (2 Marks × 15 Questions)

1.
Expand: \((3x + 2)(x + 5)\)
\(3x^2 + 17x + 10\)
\((3x+2)(x+5) = 3x(x+5) + 2(x+5) = 3x^2 + 15x + 2x + 10 = 3x^2 + 17x + 10\)
2.
Find \(96^2\) using \((a - b)^2\) identity.
9216
\(96^2 = (100-4)^2 = 100^2 - 2×100×4 + 4^2 = 10000 - 800 + 16 = 9216\)
3.
Simplify: \(4a(3b - 2) + 5a\)
\(12ab - 3a\)
\(4a(3b-2) + 5a = 12ab - 8a + 5a = 12ab - 3a\)
4.
How much does \(23 \times 27\) increase if 23 is increased by 1?
27
When first number increases by 1, product increases by second number
5.
Verify \(2(a^2 + b^2) = (a+b)^2 + (a-b)^2\) for \(a=5, b=3\).
LHS: \(2(25+9)=68\), RHS: \((8)^2 + (2)^2 = 64+4=68\) ✓
Both sides equal 68, identity verified

[Short Answer I questions 6-15 continue...]

Section E: Short Answer II (3 Marks × 10 Questions)

1.
Expand \((a + b)(a^2 + 2ab + b^2)\) and simplify.
\(a^3 + 3a^2b + 3ab^2 + b^3\)
\((a+b)(a^2+2ab+b^2) = a(a^2+2ab+b^2) + b(a^2+2ab+b^2) = a^3 + 2a^2b + ab^2 + a^2b + 2ab^2 + b^3 = a^3 + 3a^2b + 3ab^2 + b^3\)
2.
Multiply \(3874 \times 101\) using distributive property in one line.
391374
\(3874 \times 101 = 3874 \times (100+1) = 387400 + 3874 = 391374\)
3.
Show geometrically that \((a+b)^2 = a^2 + 2ab + b^2\) (describe with diagram).
Draw square of side (a+b). It consists of: one square of side a (area a²), one square of side b (area b²), and two rectangles of sides a and b (each area ab). Total area = a² + b² + 2ab = (a+b)².
Geometric proof using area decomposition
4.
If \(x = 8, y = 3\), find the area of the shaded region from page 95.
25
Area = \((n-m)^2\) where n=8, m=3 gives \((8-3)^2 = 5^2 = 25\)

[Short Answer II questions 5-10 continue...]

Section F: Long Answer Questions (5 Marks × 10 Questions)

1.
Derive all three identities: \((a+b)^2, (a-b)^2, (a+b)(a-b)\) using distributive property.
1. \((a+b)^2 = (a+b)(a+b) = a(a+b) + b(a+b) = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2\)
2. \((a-b)^2 = (a-b)(a-b) = a(a-b) - b(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2\)
3. \((a+b)(a-b) = a(a-b) + b(a-b) = a^2 - ab + ba - b^2 = a^2 - b^2\)
All derived using distributive property \(a(b+c) = ab + ac\)
2.
A park has two square green plots each of side \(g\) and a walking path of width \(w\) around them. Write an expression for the tiled area.
Tiled area = \((2g+2w)^2 - 2g^2 = 4g^2 + 8gw + 4w^2 - 2g^2 = 2g^2 + 8gw + 4w^2\)
Total area minus green area gives tiled area
3.
For the pattern in "This Way or That Way" (p. 96), show that all four expressions simplify to \(k^2 + 2k\).
1. \((k+1)^2 - 1 = k^2 + 2k + 1 - 1 = k^2 + 2k\)
2. \(k^2 + 2k\) (given)
3. \(k(k+1) + k = k^2 + k + k = k^2 + 2k\)
4. \(k(k+2) = k^2 + 2k\)
All four methods give same algebraic expression

[Long Answer questions 4-10 continue...]

Section G: Case-Based Questions (5 Cases × 4 Sub-Questions Each)

Case 1: Fast Multiplication Tricks

Rahul learns that the distributive property can be used to multiply numbers quickly. He sees the example: \( 3874 \times 11 = 3874 \times (10 + 1) = 38740 + 3874 = 42614 \). He also learns that for a 4-digit number \( dcba \): \( dcba \times 101 = dcba \times (100 + 1) = dcba00 + dcba \).

1.
Which property is Rahul using here?
a) Commutative property
b) Distributive property
c) Associative property
d) Identity property
b) Distributive property
Using \(a(b+c) = ab + ac\)
2.
What is \(495 \times 11\) using this method?
a) 5445
b) 5440
c) 4945
d) 4950
a) 5445
\(495 \times 11 = 495 \times (10+1) = 4950 + 495 = 5445\)
3.
Using the rule for multiplying by 101, what is \(3874 \times 101\)?
a) 391374
b) 387400
c) 391474
d) 387474
a) 391374
\(3874 \times 101 = 3874 \times (100+1) = 387400 + 3874 = 391374\)
4.
Which is NOT true about multiplying by 11?
a) You add the number to itself shifted left by one digit
b) It works for any number of digits
c) It only works for 2-digit numbers
d) It uses \( \times (10 + 1) \)
c) It only works for 2-digit numbers
The method works for numbers with any number of digits
Case 2: Calendar Number Patterns

In a calendar, Priya marks a 2×2 square of numbers. She labels the top-left number as \( a \), so the square becomes:

| \( a \) | \( a+1 \) |
| \( a+7 \) | \( a+8 \) |

1.
What is the difference between the diagonal products?
a) 1
b) 7
c) 8
d) 0
b) 7
\(a(a+8) - (a+1)(a+7) = a^2+8a - (a^2+8a+7) = -7\), absolute difference = 7

[Case 2 sub-questions 2-4 continue...]

[Cases 3-5 with their sub-questions continue...]

Chapter 6: We Distribute, Yet Things Multiply - Question Bank

Chapter 6: We Distribute, Yet Things Multiply - Complete Question Bank Chapter 6: We Distribute, Yet T...