Thursday, January 11, 2024

Maths NCERT Class 8 EXPONENTS AND POWERS 104 MCQs with solutions


Maths NCERT Class 8

EXPONENTS AND POWERS 104 MCQs

EXPONENTS AND POWERS

1. The value of  aΒ° is 

(a) 0

(b) 1

(c) 2

(d) a 

Answer:  (b) 1

Solution: 

(any number)Β°=1

(i.e.)  aΒ°=1


2. The exponent of  aman is 

(a) amn

(b) am+n

(c) am-n

(d) amn

Answer:  (b) am+n

Solution: 

For any non-zero integer a as bases and exponents as m, n then  

aman= am+n


3. The exponent form of -2-5-2-6 is 

(a) 1-210

(b)  1-212

(c)  1-211

             (d)  1-28

Answer: (c)  1-211 

  Solution:

-2-5-2-6= -2-5+(-6)

                                       = -2-11=1-211


4. The exponent of 10410-12 is 

(a) 1106 

(b) 1104

(c) 1108

(d) 1105 

Answer: (c) 1108

Solution: 

10410-12=104+-12=104-12=10-8=1108


5. The exponential of 343-638 is

(a) 35

(b) 36

(c) 34

(d) 37

Answer: (b) 36

Solution: 

343-638=34+-6+8=36 

                                    =312-6=36          

6. For any non-zero integer a as aman is

(a)  am+n

(b) an-m

(c) am-n

(d) amn

Answer: (c) am-n

Solution: 

For any non-zero integer a as base and aman=ama-n=am+-n=am-n


7. The value of 4-2 is

(a) 818 

(b) 116

(c) 110

(d) 16

Answer: (b) 116

Solution: 

4-2=142=116


8. The simplified form of -5-4 is

(a) 625 

(b) 1625

(c) 1525

(d) 1425

Answer: (b) 1625

Solution: 

-5-4=1-54=1-5-5-5-5=1625


9. The value of 1n is

(a) n 

(b) 0

(c) 1

(d) -1n

Answer: (c) 1

Solution: 

11=12=13=1

1-1=1-2=1-3=1

               In general  1n=1 for any integer β€˜n’ 


10. 12-5 has the simplified form as

(a) 30 

(b) 34

(c) 32

(d) 36

Answer: (c) 32

Solution: 

            12-5=1125=11212121212=1132=32                              


11. The correct form of amn is

(a) am+n 

(b) amn

(c) am-n

(d) amn

Answer: (b) amn

Solution: 

       For any non-zero integer β€˜a’ as base and exponent as m and n  then

        amn=amn            


12. The exponent of ambm is

(a) am+n

(b) abm

(c) abm-n

(d) abmn

Answer: (b) abm

Solution: 

             For any non-zero integers a and b as bases and exponent as m and n  then

        ambn=abm             


13. The value of -54-56 is

(a) 125 

(b) 120

(c) 110

(d) 115

Answer: (a) 125

Solution: 

-54-56

=-54-56 

=-54-5-6

=-54+-6

=-5-2

=1-5-2=1-5-5=125


14. The result of 1234 in power notation with positive exponent is

(a) 1210 

(b) 1212

(c) 128

(d) 1214

Answer: (b) 1212

Solution: 

1234=1234=123Γ—4=1212=1212 ∡amn=amn  

∡ 13=1

∴123=1323=123


15. The result of -32532 in power natation with positive exponent is

(a) 54 

(b) 52

(c) 56

(d) 53

Answer: (b) 52

Solution: 

-32532=-3532 ∡ ambm=abm

=-1Γ—52=-1252

=1Γ—52=52


16. The power natation with positive natation exponent of 4-64-84-5 is

(a) 142 

(b) 143

(c) 145

(d) 144 

Answer: (b) 143

Solution: 

4-64-84-5=4-64-84-5

        =4-6484-5 ∡ aman=am+n

        =4-6+84-5

                      =424-5

        =42+-5

        =4-3=143


17. The result of 3-3-6-3 in power notation with positive exponents is

(a) 1183 

(b) 1186

(c) 1-183

(d) 1-186

Answer: (c) 1-183

Solution: 

3-3-6-3=3Γ—-6-3 ∡ ambm=abm

    =-18-3

    =1-183 


18. The exponent form of ambm is

(a) ab-m 

(b) abm

(c) ba2m

(d) ba-2m

Answer: (b) abm


Solution: 

  ambm=ab-m for any non-zero integers a and b and m as exponents  


19. The value of 40+9732 is

(a) 8 

(b) 10

(c) 6

(d) 12

Answer: (b) 10

Solution: 

40+9732=1+1932

=9+1932=109Γ—9=109+19Γ—9

= 10


20. The simplified form  3-1+9-13-2 is

(a) 12 

(b) 15

(c) 13

(d) 14

Answer: (c) 13

Solution: 

3-1+9-13-2=3Γ—9-13-2

        =3132-13-2 

        =33-13-2 ∡ ambm=abm

        =3-33-2 

        =3-33-2=3-3 32=3-3+2=3-1=13


21. The value of 13-2+14-2+15-2 is

(a) 40 

(b) 50

(c) 70 

(d) 45

Answer: (b) 50

Solution: 

13-2+14-2+15-2=9+16+25=50

∴13-2=1132=119=9

  14-2=1142=1116=16

  15-2=1152=1125=25


22. The simplified form of 2-1+3-1+6-10 is

(a) 1 

(b) 3

(c) 2

(d) 4

Answer: (a) 1 

Solution: 

2-1+3-1+6-10=12+13+160 ∡ x-m =1xm 

          =3+2+160

=660=10=1 ∡ a0=1


23. The value of -35-32 is

(a) 16625726 

(b) 16625729

(c) 16624726

(d) 16624723

Answer: (b) 16625729

Solution: 

-35-32=-35-3Γ—2 ∡ amn=amn

      =35-6

      =-3-65-6 ∡ abm=ambm

      =56-36

      =5Γ—5Γ—5Γ—5Γ—5Γ—5-3-3-3-3-3-3

      =15625759


24. The simplest of 8-1522-3 is

(a) 20 

(b) 40

(c) 30 

(d) 50

Answer: (d) 50

Solution: 

8-1522-3=8-1Γ—5Γ—52-4=1824Γ—5Γ—5

            =18Γ—2Γ—2Γ—2Γ—2Γ—25=50

            = 50


25. The value of 4-13-15-1 is

(a) 160 

(b) 140

(c) 150

(d) 130 

Answer: (a) 160

Solution: 

4-13-15-1=4Γ—3-15-1 ∡ ambm=abm 

=12-15-1

=12Γ—5-1

=60-1

=160 ∡ a-m=1am


26. If the 6x6-4=65 then the value of x is

(a) 2 

(b) 1

(c) 4

(d) 6

Answer: (b) 1

Solution: 

6x6-4=65

6x6-4=65

6x 64=65

6x+4=65 

The exponents are equal since the bases are equal

∴    x+4=5      β‡’x=5-4

(i.e.) x=1 ∴  x=1

27. The simplification of 15-116-1-1 is

(a) -1 

(b) 1

(c) 2

(d) 3

Answer: (a) -1 

Solution: 

15-116-1-1=115-115-1 ∡ a-m=1am

=5-6-1

=-1-1

=-1


28. The value of 35-553-3 is

(a) 235

(b)  214

(c) 259

(d) 223

Answer: (c) 259

Solution: 

35-553-3=35-5353 ∡ a-m=1am

=35-5+3 53-3=153-3=353 

=35-2

=53-2

=5232 ∡ abm=ambm

=5Γ—53Γ—3=259


29. The rational number of 32-3 is

(a) 523 

(b) 827

(c) 625

(d) 324

Answer: (b) 827

Solution: 

32-3=1323=13323=2333=2Γ—2Γ—23Γ—3Γ—3=827

∡ a-m=1amambm=abm 


30. If -25-3 is the given form then the rational number is

(a) -1258 

(b) 12516

(c) 12315

(d) 12512

Answer: (a) -1258

Solution: 

-25-3=1-253=1-2353=53-23=5Γ—5Γ—5-2Γ—-2Γ—-2

=-12516=-1258

=12516=-1258


31. The rational form of -23-1-352 is

(a) 2534 

(b) 2712

(c) 2750

(d) 2516

Answer: (c) 2750

Solution: 

-23-1-352=1-231-352 

  =321-352  

  =3121-3252 ∡ abm=ambm

=32-3-35Γ—5

=2750


32. The power of a rational number with positive exponent of 5-25-4 is

(a) 153 

(b) 156

(c) 154

(d) 152

Answer: (b) 156

Solution: 

5-25-4=152154 ∡ a-m=1am

      =1Γ—15254

      = 152+4 ∡ aman=am+n

=156=1656=156 ∡ abm=ambm


33. The positive exponent of -12-2-12-3 is

(a) 25 

(b) 23

(c) -25

(d) -32

Answer: (c) -25

Solution: 

  -12-2-12-3=-12-2+-3

=-12-5

=1-125

=1-1525=25-15=25-1=-25


34. The value of 3-14-12-45-1 is

(a) 209 

(b) -209

(c) 103

(d) -103

Answer: (b) -209

Solution: 

3-14-12-45-1=131421-45

  =134125-4

  =4325-4 

  =42325-4

  =49-51

  =-209


35. The simplified form of 3-1-4-1-1+2-1-3-1-1 is

(a) 20 

(b) 16

(c) 18

(d) 14

Answer: (c) 18

Solution: 

3-1-4-1-1+2-1-3-1-1=13-14-1+12-13-1     ∡a-m=1am

=4-312-1+3-26-1

=112-1+16-1

=1112+116

=12+6=18


36. The value of 3-1-4-1-16-1 is

(a) 74 

(b) 72

(c) 76 

(d) 70

Answer: (b) 72

Solution: 

3-1-4-1-16-1=13-14-116 

=112-161

=111261 ∡a-m=1an 

=12Γ—6=72


37. The simplified value of 3-1+6-123-1 is

(a) 13 

(b) 12

(c) 14

(d) 15

Answer: (a) 13

Solution: 

   3-1+6-123-1=13+161231

=2+1632

=3623=13


38. The value of 4-1+23-1-1 is

(a) 45 

(b) 47

(c) 49

(d) 411

Answer: (b) 47

Solution: 

4-1+23-1-1=14+123-1

    =14+32-1

    =1+64-1

=74-1

=174=47


39. Given 3-1+4-12, the rational number of the form pq is

(a) 49142 

(b) 49140

(c) 49144

(d) 49146

Answer: (c) 49144

Solution: 

3-1+4-12=13+142 ∡a-m=1an

=4+3122

=7122

=72122 ∡ ambm=abm

=49144


40. The rational form 3-1-6-12 is

(a) 135 

(b) 136

(c) 132

(d) 134

Answer: (b) 136

Solution: 

3-1-6-12=13-162=2-162=162=1262=136 ∡abm= ambm


41. The value of 13-1-23-1-1 is

(a) 23

(b) 25

(c) 27

(d) 211

Answer: (a) 23

Solution: 

13-1-23-1-1=113-123-1

        =31-32-1

        =6-32-1

        =32-1=132=23


42. The rational form of -4-3 is

(a) -154 

(b) 164

(c) -164

(d) 134

Answer: (c) -164

Solution: 

-4-3=1-43=1-4Γ—-4Γ—-4=-164


43. 23-2 has the rational form as

(a) 49 

(b) 94 

(c) 23

(d) 45

Answer: (b) 94

Solution: 

23-2=1232=12232=3222=94 ∡abm= ambm


44. The value of 13-2 is

(a) 8 

(b) 10

(c) 9

(d) 7

Answer: (c) 9

Solution: 

13-2=32=9


45. The simplified form of 12-5

(a) 32 

(b) 34

(c) 30

(d) 36

Answer: (a) 32 

Solution: 

12-5=1125=11525=2515-321=32

            = 32


46. The value of 3-1+4-1 is

(a) 710 

(b) 78

(c) 79

(d) 712

Answer: (d) 712

Solution: 

3-1+4-1=13+14=4+312=112


47. The simplified form of 20+4-132 is

(a) 434 

(b) 454

(c) 452

(d) 435

Answer:  (b) 454

Solution: 

20+4-132=1+14Γ—9

  =54Γ—9

  =454


48. The value of 13-1+14-1+15-1 is

(a) 10 

(b) 14

(c) 12

(d) 8

Answer: (c) 12

Solution: 

13-1+14-1+15-1=113+114+115

=31+41+51=121=12


49. The simplified form of 3-16-13-2 is

(a) 13 

(b) 14

(c) 12

(d) 15

Answer: (c) 12

Solution: 

3-16-13-2=1316132

        =11819

        =11891=12


50. The simplified form of 5-14-12 is

(a) 1400 

(b) 1169

(c) 1196

(d) 1144

Answer: (a) 1400

Solution: 

5-14-12=15142=1202=12202=1400 ∡abm= ambm


51. The value of 6-17-13 is

(a) 342213

(b) 343216

(c) 341212

(d) 340213

Answer: (b) 343216

Solution: 

6-17-13=16173=16Γ—73=763=7363=343216


52. The simplest form of 4-1+5-1-1 is

(a) 209 

(b) 109

(c) 119

(d) 89

Answer: (a) 209

Solution: 

4-1+5-1-1=14+15-1 ∡ a-m=1am

=5+420-1

=920-1=1920=209=209


53. The value of 4-15-1-16-1 is

(a) 53

(b) 107

(c) 103

(d) 52

Answer: (c) 103

Solution: 

4-15-1-16-1=1415-116

=120-116

=112016

=20Γ—16

=103


54. The value after simplification of 42+32133 is

(a) 2527

(b) 2325

(c) 2521

(d) 2119

Answer: (a) 2527

Solution: 

42+32133=16+91333 ∡abm= ambm

      =25Γ—127=2527


55. The value of 42-3234-3 is

(a) 44627

(b) 44827

(c) 44027 

(d) 44227

Answer: (b) 44827

Solution: 

42-3234-3=16-91343  

=7Γ—13343 ∡abm= ambm

=7Γ—4333

=7Γ—6427=44827


56. The simplest form of 14-3-13-315-3 is

(a) 35124

(b) 36125

(c) 37125

(d) 35122

Answer: (c) 37125

Solution: 

14-3-13-315-3=1143-11331153

=11343-1133311353

=43-3353

=64-27125

=37125


57. The value of 52+42-32432 is

(a) 10 

(b) 12

(c) 16

(d) 18

Answer: (d) 18

Solution: 

52+42-32432 =25+16-9169

=32Γ·169

=32916

=18 


58. The number of be multiplied with 5-1 so that the product is equal to -7-1 is

(a) 57

(b) -57

(c) 37

(d) 47

Answer: (b) -57

Solution: 

Let β€˜x’ be the number multiplied with 5-1 to get -7-1

(i.e.)     x=5-1=-7-1 

x=-7-15-1=1-715=-1751=-57 

  =-57


59. -47-1 is the product of two numbers.  If one number is 12-1 then the other number is

(a) 78

(b) 57

(c) -78

(d) 35

Answer: (c) -78

Solution: 

Let β€˜x’ be then number to be multiplied with 12-1

(i.e.) xΓ—12-1=-47-1

(i.e.) x=-47-112-1=12-47=12-74=-78


60. The number to be divided by -36-1 so that the quotient is equal to -6-1

(a) 16

(b) 15

(c) 13

(d) 12

Answer: (a) 16

Solution:  

Let β€˜x’ be the number divides -36-1 to get -6-1

(i.e.) -36-1Γ·x=-6-1

-36-11x=-6-1 

(i.e.) 1-36x=-6-1 

(i.e.) 1-36x=1-6

(i.e.) x=636=16


61. The square of -45 is

(a) 165  

(b) 1625

(c) -1625

(d) 425

Answer: (b) 1625

Solution: 

-452=-4252=-4-45Γ—5=1625


62. The cube of -13 is

(a) 125

(b) -125

(c) 127

(d) -127

Answer: (d) -127

Solution: 

-133=-1333=-1-1-13Γ—3Γ—3=-127


63. The following number which is not same as -454

(a) -4544

(b) -4544

(c) 44-54

(d) -45-45-45-45 

Answer: (b) -4544

Solution: 

-454=-4454=44-54=-45-45-45-45

-454-4454 (∡ Even power does not end up with negative value)


64. The following number which is not reciprocal of 563 

(a) 65-3

(b) 653

(c) 6353

(d) 56-3

Answer: (a) 65-3

Solution: 

Reciprocal of 563 is 653=6353 

(i.e.)   653=165-3=16-35-3=5-36-3=56-3

563=156-3=15-36-3=6-35-3=65-3

Clearly  65-3 is not reciprocal of 563


65. The following number which is not equal to -2764 is

(a) -34-3

(b) -343

(c) 34-3

(d) -34-34-34

Answer: (c) 34-3

Solution: 

(a) -34-3=-3343=3Γ—3Γ—34Γ—4Γ—4=-2764

(b)    -343=-34-34-34=-2764 

(c)    34-3=3-34-3=4333=433=6427

(d)    -34-34-34=-2764 ∴  34-3 is not equal is -2764

66. The exponential form of 43-143-143-143-1 is

(a) 81256 

(b) 80253

(c) 81251 

(d) 81254

Answer: (a) 81256

Solution: 

43-143-143-143-1=143143143143 ∡ a-m=1am

=34343434

=81256


67. 35-235-235-2 has the exponents form as 

(a) 15628725 

(b) 15627724

(c) 15626723

(d) 15625729

Answer: (d) 15625729

Solution: 

35-235-235-2=135213521352

=132521325213252

=523252325232

=259259259

=15625729


68. The rational number of the form pq of the number 57-173-1 is

(a) 25 

(b) 15

(c) 35

(d) 45

Answer: (c) 35

Solution: 

  57-173-1=157173

=7537

=35


69. The rational number of -5-1-43-1 is

(a) 310 

(b) 720

(c) 320 

(d) 910

Answer: (c) 320

Solution: 

-5-1-45-1=1-51-43

      =-15-34

      =320


70. The value of 4-15-13 is

(a) 12564

(b) 12362

(c) 12063

(d) 12461

Answer: (a) 12564

Solution: 

4-15-13=14153

=14Γ—53

=543=5343 ∡abm= ambm

=12564


71. The negative exponents of the rational number 534-2 is

(a) 53-2

(b) 53-4

(c) 53-6

(d) 53-8

Answer: (d) 53-8

Solution: 

534-2=53-8 


72. The negative exponents of the rational number 574 is

(a) 75-2  

(b) 57-4

(c) 75-4

(d) 57-2

Answer: (c) 75-4

Solution: 

574=157-4=15-47-4=7-45-4=75-4 


73. The negative exponents of 57 is

(a) 5-7

(b) 15-7

(c) 17-5

(d) 7-5

Answer: (b) 15-7

Solution: 

57=15-7=1-75-7=15-7 ∡ a-m=1am

74. The rational number 153 has the negative exponents as

(a) 5-3

(b) 3-5

(c) 15-3

(d) 13-5

Answer: (a) 5-3

Solution: 

153=1353=5-3 ∡abm= ambm


75. The positive exponents of the rational number 54-4-3 is

(a) 547

(b) 5412

(c) 543

(d) 4512

Answer: (b) 5412

Solution: 

54-4-3=54-4Γ—-3=5412 


76. The positive exponents of the rational number 45-3 is

(a) 453

(b) 153

(c) 543

(d) 143

Answer: (c) 543

Solution: 

45-3=1453=14353=5343=543


77. The positive exponent of 525-4 is

(a) 153

(b) 152

(c) 154

(d) 151

Answer: (b) 152

Solution: 

525-4=5254=5Γ—55Γ—5Γ—5Γ—5=152=152 


78. The simplified form of -122-2-1 is

(a) 14

(b) 116

(c) 112

(d) 110

Answer: (b) 116

Solution: 

-122-2-1=-122-2=-124=-1424=12Γ—2Γ—2Γ—2

=116


79. The simplest form by 14-7-8-1-1 is

(a) 2 

(b) -3

(c) -2

(d) 3

Answer: (c) -2

Solution: 

14-7-8-1-1=1141-8-1

=4-8-1

=-12-1

=1-12=-2


80. The simplified form of 232313-43-16-1 is

(a) 3281

(b) 3180

(c) 3285

(d) 3185

Answer: (a) 3281

Solution: 

232313-43-16-1=23611341316

=2636114341316

=263634141316  

=2634-61316

=26321316

=64613Γ—32

=323133=323Γ—3Γ—3Γ—3

=3281


81. If 12-212-4=12-2x then the value of x is

(a) 3

(b) 2

(c) 4

(d) 5

Answer: (a) 3

Solution: 

12-212-4=12-2x

12-2-4=126=12-2x  

Since bases are equal 

∴ Exponents are equal

(i.e.)  -6=-2x

x=-6-2=3


82. If 13213-4=132m-1 then the value of β€˜m’ is

(a) 12 

(b) 13

(c) -12

(d) -13

Answer: (c) -12

Solution: 

13213-4=132m-1

132-4=132m-1-2=132m-1

Since bases are equal therefore it exponents are equal

-2=2m-1

(i.e.) -2+1=2m

(i.e.) -1=2m

(i.e.) m=-12


83. If x=32223-4 then the value of x-1 is

(a) 326

(b) 236

(c) 325

(d) 235

Answer: (b) 236

Solution: 

x=32223-4

  =32221234

  =9412434

  =943424

  =3Γ—32Γ—23Γ—3Γ—3Γ—32Γ—2Γ—2Γ—2=3626=326

  x=326

  ∴ x-1=32-6=236


84. If x=45-2142 then the value of x-2 is

(a) 5-2 

(b) 5-4

(c) 4-3

(d) 4-2

Answer: (b) 5-4 

Solution: 

x=45-2142

  =45-2412

  =4121452

  =4214252

x=52 

∴x-2= 52-2=5-4    β‡’ x-2=5-4 


85. The value of  β€˜x’ for which 32x3-4=36 is

(a) 2

(b) 4

(c) 1

(d) 5

Answer: (c) 1

Solution: 

32x3-4=36    β‡’ 32x3-4=36  β‡’32x34=36 

32x34=36

32x+4=36 ∡ aman=am+n

Since bases are equal therefore its exponents is equal

2x+4=6

2x=2

x=1


86. The suitable number of the given exponent                                                                     1Γ—103+4Γ—101+5Γ—100+6Γ—10-1+2Γ—10-2 is

(a) 1025.63

(b) 1045.62

(c) 1035.64

(d) 1065.67

Answer: (b) 1045.62

Solution: 

1Γ—103+4Γ—101+5Γ—100+6Γ—10-1+2=1Γ—1000+0Γ—100+4Γ—10+5Γ—1+610+2100

=1000+0+40+5+0.6+0.002

=1045.62


87. The number which corresponds to given exponents 

1Γ—103+3Γ—102+2Γ—101+7Γ—100+2Γ—10-1+6Γ—10-2+8Γ—10-3 is

          

(a) 1347.286 

(b) 1327.628

(c) 1237.628

(d) 1327.268

Answer: (d) 1327.268

Solution: 

1Γ—103+3Γ—102+2Γ—101+7Γ—100+2Γ—10-1+6Γ—10-2+8Γ—10-3

=1Γ—1000+3Γ—100+2Γ—10+7Γ—1+210+6100+81000

=1000+300+20+7+.2+.06+.008

= 1327.268


88. The standard form of the given number 0.000000465 is 

(a) 4.65Γ—10-5

(b) 4.65Γ—10-6

(c) 4.65Γ—10-7

(d) 4.65Γ—10-4

Answer: (c) 4.65Γ—10-7

Solution: 

0.000000465=4651,000,000,000

=4.65109102

=4.65107

=4.65Γ—10-7


89. The standard form of 62100000 is

(a) 6.21Γ—107 

(b) 6.21Γ—105

(c) 6.21Γ—104

(d) 6.21Γ—103

Answer: (a) 6.21Γ—107

Solution: 

62100000=621Γ—100000

      =6.21Γ—100Γ—100000

      =6.21Γ—102105

      =6.21Γ—107


90. The standard form of 0.0000051 is

(a) 5.1Γ—10-5

(b) 5.1Γ—10-6

(c) 5.1Γ—10-4

(d) 5.1Γ—10-3

Answer: (b) 5.1Γ—10-6

Solution: 

0.0000051=5110000000

        =5.1Γ—1010000000

        =5.11000000=5.1106=5.1Γ—10-6 


91. The standard form of the number 26350000 is

(a) 2.635Γ—105

(b) 2.635Γ—103

(c) 2.635Γ—104

(d) 2.635Γ—107

Answer: (d) 2.635Γ—107

Solution: 

26350000=2635Γ—10000

      =2.635Γ—1000Γ—10000

      =-2.635Γ—103104

      =2.635Γ—107


92. The usual form of the given number 5.03Γ—10-6  is

(a) .0000503 

(b) .000503

(c) .00000503

(d) .000000503

Answer: (c) .00000503

Solution: 

5.03Γ—10-6=503Γ—10-210-6

          =503Γ—10-8

          =503100,000,000

          =  .00000503


93. The usual form of the number 4.7Γ—1012 is

(a) 4700000000

(b) 4700000000000

(c) 47000000000

(d) 47000000 

Answer: (b) 4700000000000

Solution: 

4.7Γ—1012=4710Γ—1,000,000,000,000

=47Γ—100,000,000,000

= 4700000000000


94. The usual form of 5Γ—10-8 is

(a) .0000005

(b) .000005

(c) .000005

(d) .00000005

Answer: (d) .00000005

Solution: 

5Γ—10-8=51,00,000,000=.00000005


95. The number 2.0002109 has the usual form as

(a) 2002000

(b) 200200

(c) 20020000

(d) 200200000

Answer: (d) 200200000

Solution: 

2.0002109=2000210000Γ—1,000,000,000

=2002Γ—100000

=200,200,000


96. The usual form of 5.42639Γ—106 is

(a) 5426930 

(b) 5426390

(c) 5426039

(d) 5426309

Answer: (b) 5426390

Solution: 

5.42639Γ—106=542639100,000Γ—1,000,000

  =542639Γ—10

  = 5426390


97. The standard form of 0.0000000000058 is

(a) 5.8Γ—10-8

(b) 5.8Γ—10-11

(c) 5.8Γ—10-12

(d) 5.8Γ—10-7

Answer: (c) 5.8Γ—10-12

Solution: 

0.0000000000058=5810000000000000

          =581013

          =5.8Γ—101013

            =5.81012=5.8Γ—10-12


98. The standard form of 7030000000000000 is

(a) 7.03Γ—1013

(b) 7.03Γ—1012

(c) 7.03Γ—1015

(d) 7.03Γ—1014

Answer: (c) 7.03Γ—1015

Solution: 

7030000000000000 =703Γ—10,000,000,000,0000

=703Γ—1013

=7.03Γ—1021013

=7.03Γ—1015


99. The standard form of 1 micron is equal to 11,000,000  m is

(a) 1Γ—10-5

(b) 1Γ—10-7

(c) 1Γ—10-6

(d) 1Γ—10-8

Answer: (c) 1Γ—10-6

Solution: 

Given    11000000=1106=1Γ—10-6    m

(i.e.) 1 micron  =1Γ—10-6    m

100. The standard form of size of a bacteria. 0000005m is

(a) 5Γ—10-6

(b) 5Γ—10-5

(c) 5Γ—10-7

(d) 5Γ—10-4

Answer: (c) 5Γ—10-7

Solution: 

Given    0.0000005=510,000,000=5107=5Γ—10-7


101. In a stack if there are 5 books each of thickness 10mm and 4 paper sheets each of thickness 0.015mm then the total thickness of the stack is

(a) 5.06Γ—101mm

(b) 5.06Γ—102mm

(c) 5.006Γ—101mm

(d) 5.006Γ—102mm

Answer: (c) 5.006Γ—101mm

Solution: 

Thickness of one book = 10mm

∴ Thickness of 5 books =5Γ—10mm=50mm

Thickness of 1 paper sheet = 0.015mm

∴ Thickness of 4 paper sheet =4Γ—0.015mm

= 0.06mm

Total thickness = 50mm + 0.06mm

  = 50.06mm

  = 5.006Γ—101mm


102. The standard form of size of a plant cell 0.00001275m is

(a) 1.275Γ—10-3

(b) 1.275Γ—10-2

(c) 1.275Γ—10-4

(d) 1.275Γ—10-5

Answer: (d) 1.275Γ—10-5

Solution: 

Given   0.00001275=1275100000000

=1275108=1.275Γ—103108

=1.275105

=1.275Γ—10-5 


103. A number if it is expressed as the product of a number between 1 and 10 and integral power of 10 then it is

(a) usual form

(b) standard form

(c) normal form

(d) general form

Answer: (b) standard form

Solution: 

A number is said to be in the standard form if it is expressed as the product of a number between 1 and 10 and integral power of 10.


104. A number is said to be in the standard form when it is written as kΓ—10n where

(a) 1<k<10 

(b) 1<k≀10

(c) 1≀k<10

(d) 1≀k≀10

Answer: (c) 1≀k<10

Solution: 

A number is said to be in the standard form when it is written as kΓ—10n where 1≀k<10


105. The standard form of thickness of a thick paper 0.07mm is 

(a) 7Γ—10-2mm

(b) 7Γ—10-3mm

(c) 7Γ—10-4mm

(d) 7Γ—10-6mm

Answer: (a) 7Γ—10-2mm

Solution: 

Given

0.07=7100=7102=7Γ—10-2

∴ Thickness of a thick paper is 7Γ—10-2mm


106. A number is said to be in the standard form when it in written as kΓ—10n where 1≀k<10 and β€˜n’ is

(a) whole number  

(b) an integer

(c) natural number

(d) positive integer

Answer: (b) an integer

Solution: 

A number is said to be in the standard form when it is written as k10n where 1≀k<10 and β€˜n’ is an integer.

 



 

 





                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             



Tuesday, January 2, 2024

UG TRB MATHEMATICS SYLLABUS

 

UG TRB MATHEMATICS SYLLABUS

UNIT-1 ALGEBRA and TRIGONOMETRY

Polynomial Equations β€” Imaginary and Irrational Roots Relation between Roots and Coef1iclents symmetric function of Roots in terms of coefficient- Transformation of equation β€” Reciprocal equation - Increase or Decrease the roots of given equation - Removal of terms β€” Descartes's rule of signs β€” Approxmate solution of roots of polynomial by Homer's Method Cardan's method of solution of cubic polynomial β€” Summation of series using Binomial β€” Exponentialand Logarithmic series.

Symmetric β€” Skew symmetilc, Hermitian β€” Skew Hermitian, Orthogonal Matrices, Unitary Matrices Eigen Values β€” Eigen Vectors β€” Cayley-HamiIton Theorem β€” Similar Matrices β€” Diagonalizalion of Matrices.

Prime Number, Composite Number, Decomposition of a Composite Number as a Product of primes uniquely β€” Divisor of a positive Integer β€” Euler Function. Congruence Modulo n, Highest power of prime number p Contained in n! β€” Application of Maxima and Minima β€” Prime and Composite numbers β€” Euler's function Ξ¦(N) β€” Congruences β€” Fermatβ€˜s, Wilson's and Lagrange's theorems.

Expansions of Power of sinnX, cosnX, tannx β€” Summation by C + i S method, Telescopic Summation - Expansion of sinx, cosx, tanx in lerms of x - Sum of Roots of Trigonometric Equation, Formation of Equation With Trigonometric Roots - Hyperbolic Functions β€” Relation Between Circular and Hyperbolic Function β€” Inverse Hyperbolic Function β€” Logarithm of a complex number β€” Principal Value and General Values,

UNIT II DIFFERENTIAL CALCULUS, INTEGRAL CALCULUS and ANALYTICAL GEOMETRY

 

n* derivatives β€”Trigonometrical Transformations β€” Leibnitz Theorem β€” Implicit functions - Partial Differentiationβ€” Maxima / Minima of a function of Ma variables β€” Lagrangian multiplier method - Radius of curvature in Cartesian and Polar forms β€” Angle between radius vector and tangent β€” Slope of tangent of a polar curve β€” p-r equations β€” Center of Curvature β€” Evolutes, Envelopes β€”Asymptotes of Algebraic curves - Asymptotes by inspection β€” Intersection of a curve with asymptotes. 

Evaluation of Double and Triple integrals β€” Applications of Multiple lntegrals in finding volumes, surface areas of solids β€” Areas of curved surfaces β€” Jacobians β€” Transformation of fntegrals using Jacobians β€” Indefinite integrals - Beta and Gamma Functions and their properties β€” Evaluation of lntegrals using Beta and Gamma Functions.

 Pole and Polar β€” Conjugate points and Conjugate lines, Conjugate diameters - Polar Coordinates β€” General Polar Equation of a Straight line β€” General Polar Equation of a Conic

UNIT III DIFFERENTIAL EQUATIONS and LAPLACE TRANSFORMATIONS

 Ordinary Differential Equations - Homogeneous Equations - Exact equations - Integrating Factors - Linear equations - Reduction of order β€” Second order Linear differential equations β€” General soluton of homogeneous Equations β€” Homogeneous equation with constant coefficients β€” Method of undetermined coefficients - method of Variation of Parameters - System of first order equations β€” Linear systems - Homogeneous linear systems with constant coefficients.

Partial Differential Differential Equations - Formation of Partial Oifferential Differential Equations by eliminating arbitrary constants and arbitrary functions. Solving PDEs: Complele integral - Singular Integral - general integral - Lagrange's equation Pp+Qq=R - Charpit's mefhod and special types of first order equations. 

Laplace transform of elementary functions β€” Laplace transforms of special functions like unit step function. Dirac Delta function β€” Properties of Laplace Transformation and Laplace Transforms of derivatives and integrals β€” Evaluation of integrals using Laplace transform - Initial value theorem - Final value theorem β€” Laplace transform of periodic functions β€” Inverse Laplace transforms β€” Convolution theorem β€” Application of Laplace transformations in solving first and second order linear differential equations and simultaneous linear ordinary differential equations.

UNIT -IV   VECTOR CALCULUS and FOURIER SERIES, FOURIER TRANSFORMS

Vector Differentiation β€” Velocity and Acceleration β€” Vector valued functions and Scalar potentials β€” Gradient β€” Divergence β€” Curl β€” Directional Derivative β€” Unit normal to a surface β€” Laplacian double operator β€” Harmonic functions.

Vector Integration β€” Line integral β€” Conservative force field β€” Determining Scalar Potential from a conservative force field β€” Work done by a force β€” Surface Integral β€” Volume inlegral β€” Theorems of Gauss, Stokes, and Green.

 Fourier Series β€” Expansions of Periodic functions of period 2x - Expansion of even and odd functions β€” half range series β€” Evaluation of Infinite Series using Fourier Series expansions β€” Fourier Transforms β€” Infinite Fourier Transform β€” Fourier Sine and Cosine transforms β€” Simple properties of Fourier Transforms β€” Convolution Theorem β€” Parseval's identity.

UNIT -V ALGEBRAIC STRUCTURES

Groups β€” Subgroups, cyclic Groups and properties of cyclic groups, Lagrange's Theorem β€” Counting Principles β€” Normal subgroups, Quotient groups, Homomorphism, Automorphism, Cayley's theorem, Permutation groups β€” Rings β€” Some special classes of Rings β€” Integral domain, Homomorphism of rings β€” Ideal and Quotient rings β€” Prime ideal, ktaximum Ideals β€”the field and quotients of an integral domain β€” Euclidean rings β€” Algebra of Linear transformation, Characteristic roots, matrices, Canonical forms, Triangular Foims β€” Problems of converting Linear Transformation to Matrices and vice-versa β€” Vector Space β€” Definition and examples β€” Linear dependence β€” Independence, Sub spaces and Dual spaces β€” Inner product spaces.

UNIT-VI REAL ANALYSlS

Sets β€” Countable and Uncountabfe sets β€” Real Number system R β€” Functions β€” Real Valued functions, Equivalence and Countability β€” Infremum and Supremum of a subset of R β€” BoIzanO- Weierstrass Theorem β€” Sequences of real numbers β€” Convergent and Divergent Sequences β€” Monatane Sequences β€” Cauchy Sequences β€” Limit Superior and Limit Inferior of a sequence β€” Sub Sequences β€” Infinite series β€” Alternating Series β€” Conditional convergence and Absolute convergence β€” Tesls of Absolute convergence β€” Continuity and Uniform Continuity of a real valued function of a real variable β€” Limit of a function at a point β€” Coninuity and Differentiabllity of real valued functions β€” Rolle’s Theorem β€” Mean Value Theorems β€” Inverse function theorem, Taylorβ€˜s Theorem with remainder forms β€” Pawer senes expansion β€” Riemann Integrability β€” Sequences and Series of Functions.

Metric spaces β€” Limits of a function at a point in metric spaces β€” functions continuous on a metric space β€” various reformulations of continuity of a function in a metric space - open sets β€” closed sets β€” discontinuous functions on the real line.

UNIT VII COMPLEX ANALYSIS

Algebra of Complex Numbers β€” Function of Complex Variable β€” Mappings, Limits β€” Theorems on Limits, confinuity, differentiability β€” CauEhy-Riemann Equations - Analytic Functions β€” Harmonic Function β€” Conformal mapping

β€” Mobius Transformations β€” Elementary Transformation β€” Bilinear Transformations β€” Cross ratio β€” Fixed points of biJinear transformations β€” Special Bilinear transformations.

Contours β€” Contour Integrals - Anti DeΓ±vatives β€” Cauchy-Goursat Theorem- Power Series β€” Complex Integration

β€” Cauchy*s theorem, Morera's theorem, Cauchy's Integral Formula β€” Liouville's Theorem β€” Maximum Modulus Principle

β€” Schwarz's Lemma β€” Taylor's series β€” Laurent's sefies β€” Calculus of Residues β€” Residue Theorem β€” Evaluation of Integrals - Definite integrafs of Trigonometrlc functions β€” Argument principle and Rouche's Theorem.

UNIT VIII MECHANICS

Statics: Farces on a rigid body β€”Moment of a force β€” General motion of a rigid body β€” Equivalent system of forces

β€” Parallel Forces β€” Forces along the sides of Triangle Couples.

Resultant of several coplanar forces β€” Equation of line of action of the resultant β€” Equilibrium of rigid body under three Coplanar forces β€” Reduction of Coplanar fDrces into single force and couples β€” Laws of friction, angle of friction. Equilibrium of a body on a rough inclined plane acted on by several forces β€” Equilibrium of a uniform Homogeneous string β€” Catenary β€” Suspension bridge β€” Centre of Gravity ol uniform rigid bodies,

Dynamics: Velocity and AcceJeration β€” Coplanar motion β€” Rectilinear motion under constant forces β€” Acceleration and retardation thrust on a plane β€” Motion atong a Vertical line under gravity β€” Motion along an inclinerl plane β€” motion of connected particles β€” Newton's Laws of mofion.

Work, Energy and power β€” Work β€” Conservative field of force β€” Power β€”Rectilinear motion under varying force Simple Harmonic Motion (S,H.M) β€” S.H.M along a horizontal line β€” S.H.M along a Vertical line β€” Motion under gravity in a resisting medium.

Path of a projectile - Particle projected on an inclined plane β€” Analysis of forces acting on particles and rigid bodies on static equilibrium, equivalent systems of forces, friction, centroids and moments of inertia β€” Elastic Medium, Impact - Impulsive force β€” Impact of sphere β€” Impact of two smooth spheres β€” Impact of two spheres of two smooth sphere on a plane β€” oblique impact of two smooth spheres.

Circular motion β€” Conical Pendulum motion of a cyclist on circular path β€” Circular motion on a vertical plane relative rest in revolving cone β€” simple pendulum β€” Central Orbits β€” Conic as Centered Orbit β€” Moment of inertia

UNIT IX OPERATIONS RESEARCH

Linear Programming β€” Formulation β€” Graphical Solution - Simplex Method β€” Big β€”M method β€” Two phase method - Duality β€” Primal dual relation β€” dual simplex method β€” revised simplex method β€” Sensitivity analysis β€” Transportation Problem β€” Assignment Problem β€” Queuing Theory β€” Basic Concepts β€” Steady State analysis of M/M/1 and M/M/Systems with infinite and finite capacities.

 PERT-and CPM β€” Project network diagram β€” Critical path β€” PERT computations-Inventory Models- Basic Concept -EOQ Models β€” uniform Demand rate infinite and finite protection rate with no shonage β€” Classical newspaper boy problem with discrete demand β€” purchase inventory model with one price brake β€” Game theory - Two person Zero β€” Sum game with saddle point β€” without saddle point β€” Dominance β€” Solving 2xn or mx2 game by graphical method β€” Integer programming β€” Branch and bound method

UNITβ€”X STATISTICS/PROBABILITY

Measures of central tendency - Measures of Dispersion β€” Moments - Skewness and Xurtosis β€” Correlation β€” Rank Correlation β€” Regression β€” Regression line of x on y and y on x β€” Index Numbers β€” Consumer Price Index numbers β€” Conversion of chain base Index Number into fixed base index numbers - Curve Fitting β€” Principle of Least Squares - Fitting a straight line β€” Fitting a second degree parabola β€” Fitting of power curves - Theory of Attributes β€” Attributes β€” Consistency of Data β€” Independence and Associate of data.

Theory of Probability β€” Sample Space - Axioms of Probability - Probability function β€” Laws of Addition - Conditional Probability β€” Law of multiplication - Independent β€” Boole's Inequality - Bayes’ Theorem β€” Random Variables Distribution function β€” Discrete and continuous random variables β€” Probability density functions β€” Mathematical Expectation β€” Moment Generating Functions β€” Cumutates - Characteristic functions β€” Theoretical distributions β€”

Binomial, Poisson, Normal distributions β€” Properties and conditions of a normal curve β€” Test of significance of sample and large samples β€” Z-test - Student's t-test β€” F-test - Chi square and contingency coefficient.

Class: 6 Chapter: 2 LINES AND ANGLES – WORKSHEET-2 answer key

LINES AND ANGLES – ANSWER KEY Class 6 | Chapter 2 | Total Questions: 52 πŸ“˜ Topic-wise Answer Key with Explanations & Competencies 1. Und...