Tuesday, December 19, 2023

Class – 7 CH-13 EXPONENTS AND POWERS MATHS NCERT SOLUTIONS

 

Class – 7 CH-13 EXPONENTS AND POWERS 

MATHS NCERT SOLUTIONS

 Exercise 13.1 


   
Question 1:   
Find the value of: 
(i) 26 (ii) 93  (iii) 112 (iv) 54 
  SOLUTION 1:  
(i) 26 = 2 x 2 x 2 x 2 x 2 x 2 = 64 
(ii) 93 = 9 x 9 x 9 = 729 
(iii) 112 = 11 x 11 = 121 
(iv) 54= 5 x 5 x 5 x 5 = 625 
 
 
 
Question 2:   
Express the following in exponential form: 
(i) 6 x 6 x 6 x 6 (ii) tt  
(iii) b b b b    (iv) 5 x 5 x 7 x 7 x 7 
(v) 2 2  a a  (vi) a a a c c c c d       
  SOLUTION 2:  
(i) 6 x 6 x 6 x 6 = 64 
(ii) t t  t2  
(iii) b b b b    b4  
(iv) 5 x 5 x 7 x 7 x 7 = 52 x 73 
(v) 2    2 a a 22 a2  
(vi) a a a c c c c d         a3 c4
 
 
 
Question 3:   
Express each of the following numbers using exponential notation: 
(i) 512  (ii) 343 (iii) 729 (iv) 3125 
  SOLUTION 3:  
(i) 512  
 
 
 

   
  
 
 
 
 
 
 
 
 
 
 
 
 
(ii) 
  
 
 
 
 
(iii) 
  
 
 
 
 
 
 
 
 
(iv) 
 
 
 
 
 
 
 
  2 512 
2 256 
2 128 
2 64 
2 32 
2 16 
2
2
2
 
512 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 29 
343  
7 343 
7 49 
7
 
343 = 7 x 7 x 7 = 73 
729  
3 729 
3 243 
3 81 
3 27 
3
3
 
729 = 3 x 3 x 3 x 3 x 3 x 3 = 36 
3125  
5 3125 
5 625 
5 125 
5 25 
5
 
3125 = 5 x 5 x 5 x 5 x 5 
 

   
Question 4:   
Identify the greater number, wherever possible, in each of the following: 
(i) 43 and 34 (ii) 53 or 35 
(iii) 28 or 82 (iv) 1002 or 2100 
(v) 210 or 102   SOLUTION 4:  
(i) 43 = 4 x 4 x 4 = 64 
34 = 3 x 3 x 3 x 3 = 81 
Since 64 < 81 
Thus, 34 is greater than 43. 
 
(ii) 53 = 5 x 5 x 5 = 125 
35 = 3 x 3 x 3 x 3 x 3 = 243 
Since,  125 < 243 
Thus, 34 is greater than 53. 
 
(iii) 28 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 256 
  82 = 8 x 8 = 64 
  Since, 256 > 64 
Thus, 28 is greater than 82. 
 
(iv) 1002 = 100 x 100 = 10,000 
  2100 = 2 x 2 x 2 x 2 x 2 x …..14 times x ……… x 2 = 16,384 x ….. x 2 
  Since, 10,000 < 16,384 x ……. x 2    Thus, 2100 is greater than 1002. 
 
(v) 210 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 1,024 
  102 = 10 x 10 = 100 
  Since, 1,024 > 100 
  Thus, 210 > 102 
 
 
 
 
Question 5:   
Express each of the following as product of powers of their prime factors: 
(i) 648  (ii) 405 (iii) 540 (iv) 3,600 
  SOLUTION 5:  
(i) 648 = 23 x 34 
2 648 
2 324 
2 162 
3 81 
3 27 
3
3
 
(ii) 405 = 5 x 34 
5 405 
3 81 
3 27 
3
3
 

(iii) 540 = 22 x 33 x 5 
2 540 
2 270 
3 135 
3 45 
3 15 
5
 
 
 
4

   
(iv) 3,600 = 24 x 32 x 52 
 
 
 
 
 
 
 
 
 
  
Question 6:   
Simplify: 
(i) 2 x 103 (ii) 
(iii) 23 x 5  (iv) 
(v) 0 x 102    (vi) (vii) 24 x 32     (viii) 
  SOLUTION 6:  
(i) 2 x 103  = 2 x 10 x 10 x 10   
(ii) 72 x 22  = 7 x 7 x 2 x 2   
(iii) 23 x 5    = 2 x 2 x 2 x 5   
(iv) 3 x 44    = 3 x 4 x 4 x 4 x 4   
(v) 0 x 102  = 0 x 10 x 10     
(vi) 53 x 33  = 5 x 5 x 3 x 3 x 3   
(vii) 24 x 32  = 2 x 2 x 2 x 2 x 3 x 3  
(viii) 32 x 104  = 3 x 3 x 10 x 10 x 10 x 10  
 
Question 7:   
Simplify: 
(i) 43    (ii) 
(iii) 32  52    (iv) 
  SOLUTION 7:  
(i) 43        4  4  4 64  
 
  2 3600 
2 1800 
2 900 
2 450 
3 225 
3 75 
5 25 
5
 
72 x 22 3 x 44 
52 x 33 
32 x 104 
= 2,000 
= 196 
= 40 
= 768 
= 0 
= 675 
= 144 
= 90,000 
  3  23  
  23  103 
 
(ii)   3  23          3  2  2  2 24  
(iii) 32  52          3  3  5  5 225  
(iv) 23  103         2  2  2  10  10  10 
 
 
Question 8:   
Compare the following numbers: 
(i) 2.7 x 1012; 1.5 x 108   (ii) 4 x 1014; 3 x 1017   SOLUTION 8:  
(i) 2.7 x 1012 and 1.5 x 108 
On comparing the exponents of base 10, 
 2.7 x 1012 > 1.5 x 108 
 
(ii) 4 x 1014 and 3 x 1017 
  On comparing the exponents of base 10, 
  4 x 1014 < 3 x 1017  
6

   

 Exercise 13.2  

Question 1:   
Using laws of exponents, simplify and write the SOLUTION in exponential form: 
(i) 32 x 34 x 38 (ii) 615  610 
(iii) a3a2  (iv) 7x 72  
(v) (52)2  53 (vi) 25 x 55 
(vii) a b4  4  (viii) (34)3 
(ix) (220  215) x 23 (x) 8 8t  2 
  SOLUTION 1:  
(i) 3 3 3 32  4 8 2 4 8   314   a a am n  m n   
(ii) 615  610 615 10  65     a a am  n  m n  
(iii) a a a3 2 3 2 a5   a a am n  m n  
(iv) 7x  72 7x2     a a am n  m n  
(v) 523  5 53 2 3   5 5 53 6 3     amn am n  
            = 56 3 53     a a am  n  m n  
(vi) 2555 2 5 5 105   a bm m a b m 
(vii) a b4 4 a b 4   a bm m a b m 
(viii) 343 = 34 3  312   amn am n  
(ix) 220 21523 = 220 15 23     a a am  n  m n  
  = 2 2 25 3 5 3 28     a a am n  m n  
(x) 8t  82 8t2     a a am  n  m n  
 
 
 
 
 
Question 2:   
Simplify and express each of the following in exponential form: 
(i) 2 3 433 32  4   (ii) 5235457  
4 53  (iv) 3 7 11 2 8  
(iii) 25 
21 11
(v) 37 0  30 40  
(vi) 2
3 34  3
(vii) 20  30 40  (viii) 30 2050  
28a5 a5  8
(ix) 43a3  (x)  a3 a  
(xi) 4455a ba b5 28 3  (xii)  3 22 2 
  SOLUTION 2:  
2 3 4 2 3 23 4 3 4 2 23 2 34
(i) 3 32  3 2 5  3 2 5     a a am n  m n  
3 2
      = 20 33 = 1 3 3 33  
 
3 n
      =   54 25 5 34 3   a a am  n  m n  2 35
(ii) 52 5457 565457   am am n  
     = 56 4 57  510 57   a a am n  m n  
     = 510 7  53     a a am  n  m n  
 
(iii) 25 54  3 524   5 5 53 8 3     amn am n  
    = 58 3 55   a a am  n  m n  
 
3 7 11 3 7 11
(iv)  21 112 3 8  3 7 11  2 38  31 1 72 1 118 3     a a am  n  m n  
          = 30  71 115 = 7 11 5  
 
 
 

   
 
(v) 
  
 
(vi) 
 
(vii) 
 
(viii) 
 
(ix) 
  
  
 
(x) 
  
 
(xi) 
  
 
(xii) 
  
 
 
 
 
   
37 37 37
  3 3 34  3 4 3 37
= 37 7  30  
20      30 40 1 1 1  
20      30 40 1 1 1  
30 2050      1 1 1 2 1  
28a5 28a5 28a5
3 a3  223a3 26a3   4 
= 28 6 a5 2  22 a2     
= 2a2   
 a5  8 a5 3 a8  a2 a8   
 a3 a 
     = a2 8  a10   
45a b8 3 45 5 a8 5 b3 2   40 a3 b  
 45a b5 2
    = 1  a b ab3  
2 23 2 23 1 2 242   
   = 24 2 28 
   
 
 
 
 
 
 
 
 
 
 
 
  










 a a am n  m n   a a am  n  m n  
 a0 1 
 a0 1 
 a0 1 
 amn am n  
 a a am  n  m n   a bm m a b m 
 a a am  n  m n   a a am n  m n  
 a a am  n  m n   a0 1 
 a a am n  m n  

 
Question 3:   
Say true or false and justify your SOLUTION:
(i) 10 x 1011 = 10011 (ii) 23 > 52 
(iii) 23 x 32 = 65 (iv) 30 = (1000)0 
  SOLUTION 3:  
(i) 10 10 11 10011    
L.H.S. 101 11 = 1012    and R.H.S. 10211 1022  
Since, L.H.S.  R.H.S. 
Therefore, it is false. 
 
(ii) 23  52  
  L.H.S. 2 83     and R.H.S. 52  25  
  Since, L.H.S. is not greater than R.H.S. 
  Therefore, it is false. 
 
(iii) 23 32 65  
  L.H.S. 23   32 8 9 72  and R.H.S. 65  7,776  
Since, L.H.S.  R.H.S. 
Therefore, it is false. 
 
(iv) 30 10000  
  L.H.S. 30 1    and R.H.S. 10000 = 1 
Since, L.H.S. = R.H.S. 
Therefore, it is true. 
 
 
Question 4:   
Express each of the following as a product of prime factors only in exponential form: 
(i) 108 x 192    (ii) 270 (iii) 729 x 64    (iv) 768 
  SOLUTION 4:  
(i) 108 x 192  
 
 

   
  
  
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
(ii) 
  
 
 
 
 
 
 
 
(iii) 
   
   
108 x 192 
   
   
270 
270  
729 x 64  
729 x 64  2 192 
2 96 
2 48 
2 24 
2 12 
2
3
 
= 2233263  
= 22 6 33 1  
= 28 34 
2 108 
2 54 
3 27 
3
3
 
 
2 270 
3 135 
3 45 
3 15 
5
 
= 2 35 5  
= 36 26 
2 64 
2 32 
2 16 
2
 
2
2
 
 
3 729 
3 243 
3 81 
3 27 
3
3
 
 
 
 
 
 
 
 
 
 
(iv) 768  
2 768 
2 384 
2 192 
2 96 
2 48 
2 24 
2 12 
2
3
 
  768 = 28 3  
 
 
 
 
 
 
 
 
 
 
 
Question 5:   
Simplify: 
252 73
(i) 3   
8 7
25 5
(ii)  3 2t4t8  
10 
3 10 255
(iii)  7 5 5  
5 6
 
 
  SOLUTION 5:  
25273 25 2 73
(i) 837  2337  
2 710  3
=  2 79   
= 210 9 73 1  2 72  
= 2 x 49  
= 98 
 
25 5 2 t8 5 52 2 t8
(ii) 103t4  5 2 3t4  
52 2 t8 4
=  2 33 3   
54 t4
  =  2 53 3  
54 3 t4
=  23   
5t4
=    
8
 
3 10 255 5 3 2 5 55   5 2
(iii) 5 67  5 = 57  2 35   
3 2 5 55  5 5 2
 
= 5 2 37  5 5   
3 2 55 5 5 2
 
  = 5 2 37  5 5  
3 2 55 5 7
 
= 5 2 37  5
  = 25 5 35 5 55 5  
  = 20  30 50  
  = 1 x 1 x 1 
  = 1 
 
7

 Exercise 13.3  

Question 1:   
Write the following numbers in the expanded form: 
279404,  3006194, 2806196, 120719, 20068 
  SOLUTION 1:  
(i) 2,79,404  = 2,00,000 + 70,000 + 9,000 + 400 + 00 + 4 
 = 2 x 100000 + 7 x 10000 + 9 x 1000 + 4 x 100 + 0 x 10 + 4 x 1 
 = 2 10          5 7 104 9 103 4 102 0 101 4 100  (ii) 30,06,194 = 30,00,000 + 0 + 0 + 6,000 + 100 + 90 + 4 
= 3 x 1000000 + 0 x 100000 + 0 x 10000 + 6 x 1000 + 1 x 100 + 9 x 10 + 4 x 1 
  = 3 10            6 0 105 0 104 6 103 1 102 9 10 4 100  
(iii) 28,06,196 = 20,00,000 + 8,00,000 + 0 + 6,000 + 100 + 90 + 6 
= 2 x 1000000 + 8 x 100000 + 0 x 10000 + 6 x 1000 + 1 x 100 + 9 x 10 + 6 x 1 
  = 2 10            6 8 105 0 104 6 103 1 102 9 10 6 100  
(iv) 1,20,719 = 1,00,000 + 20,000 + 0 + 700 + 10 + 9 
 = 1 x 100000 + 2 x 10000 + 0 x 1000 + 7 x 100 + 1 x 10 + 9 x 1 
= 1 10          5 2 104 0 103 7 102 1 101 9 100  
(v) 20,068 = 20,000 + 00 + 00 + 60 + 8 
 = 2 x 10000 + 0 x 1000 + 0 x 100 + 6 x 10 + 8 x 1 
      = 2 10        4 0 103 0 102 6 101 8 100 
 
Question 2:   
Find the number from each of the following expanded forms: 
(a) 8 x 104 + 6 x 103 + 0 x 102 + 4 x 101 + 5 x 100 
(b) 4 x 105 + 5 x 103 + 3 x 102 + 2 x 100 
(c) 3 x 104 + 7 x 102 + 5 x 100 
(d) 9 x 105 + 2 x 102 + 3 x 101   SOLUTION 2:  
(a) 8 x 104 + 6 x 103 + 0 x 102 + 4 x 101 + 5 x 100 
= 8 x 10000 + 6 x 1000 + 0 x 100 + 4 x 10 + 5 x 1 
= 80000 + 6000 + 0 + 40 + 5 
= 86,045 
(b) 4 x 105 + 5 x 103 + 3 x 102 + 2 x 100 
= 4 x 100000 + 0 x 10000 + 5 x 1000 + 3 x 100 + 0 x 10 + 2 x 1 
= 400000 + 0 + 5000 + 3000 + 0 + 2 
= 4,05,302 
 
(c) 3 x 104 + 7 x 102 + 5 x 100 
  = 3 x 10000 + 0 x 1000 + 7 x 100 + 0 x 10 + 5 x 1 
  = 30000 + 0 + 700 + 0 + 5 
  = 30,705 
(d) 9 x 105 + 2 x 102 + 3 x 101 
  = 9 x 100000 + 0 x 10000 + 0 x 1000 + 2 x 100 + 3 x 10 + 0 x 1 
  = 900000 + 0 + 0 + 200 + 30 + 0 
  = 9,00,230 
Question 3:   
Express the following numbers in standard form: 
(i) 5,00,00,000 (ii) 70,00,000 
(iii) 3,18,65,00,000 (iv) 3,90,878 
(v) 39087.8 (vi) 3908.78 
  SOLUTION 3:  
(i) 5,00,00,000    = 5 x 1,00,00,000 = 5 10 7  
(ii) 70,00,000 = 7 x 10,00,000 = 7 10 6  
(iii) 3,18,65,00,000  = 31865 x 100000  
= 3.1865 x 10000 x 100000 = 3.1865 10 9  
(iv) 3,90,878 = 3.90878 x 100000 = 3.90878 10 5  
(v) 39087.8 = 3.90878 x 10000 = 3.90878 10 4  
(vi) 3908.78  = 3.90878 x 1000 = 3.90878 10 3 
 
Question 4:   
Express the number appearing in the following statements in standard form: (a) The distance between Earth and Moon is 384,000,000 m. 
(b) Speed of light in vacuum is 300,000,000 m/s. 
(c) Diameter of Earth id 1,27,56,000 m. 
(d) Diameter of the Sun is 1,400,000,000 m. 
(e) In a galaxy there are on an average 100,000,000,0000 stars. 
(f) The universe is estimated to be about 12,000,000,000 years old. 
(g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be 300,000,000,000,000,000,000 m. 
(h) 60,230,000,000,000,000,000,000 molecules are contained in a drop of water weighing 1.8 gm. 
(i) The Earth has 1,353,000,000 cubic km of sea water. 
(j) The population of India was about 1,027,000,000 in march, 2001. 
  SOLUTION 4:  
(a) The distance between Earth and Moon  = 384,000,000 m 
= 384 x 1000000 m  
= 3.84 x 100 x 1000000  
= 3.84 10 8 m 
 
(b) Speed of light in vacuum = 300,000,000 m/s 
  = 3 x 100000000 m/s 
   
  = 3 10 8 m/s 
(c) Diameter of the Earth = 1,27,56,000 m 
  = 12756 x 1000 m  
= 1.2756 x 10000 x 1000 m 
   
  = 1.2756 10 7 m 
(d) Diameter of the Sun = 1,400,000,000 m 
  = 14 x 100,000,000 m  
= 1.4 x 10 x 100,000,000 m 
   
  = 1.4 10 9 m 
(e) Average of Stars = 100,000,000,000 
  = 1 x 100,000,000,000 
   
  = 1 10 11  
(f) Years of Universe = 12,000,000,000 years 
  = 12 x 1000,000,000 years 
  = 1.2 x 10 x 1000,000,000 years 
  = 1.2 10 10 years 
 
(g) Distance of the Sun from the centre of the Milky Way Galaxy  
= 300,000,000,000,000,000,000 m 
  = 3 x 100,000,000,000,000,000,000 m 
  = 3 10 20 m 
 
(h) Number of molecules in a drop of water weighing 1.8 gm  
= 60,230,000,000,000,000,000,000  
  = 6023 x 10,000,000,000,000,000,000  
  = 6.023 x 1000 x 10,000,000,000,000,000,000  
  = 6.023 10 22  
 

  
   
 
(i) The Earth has Sea water 
   
   
   
 
(j) The population of India 
   
   
   
  = 1,353,000,000 km3 
= 1,353 x 1000000 km3 
 = 1.353 x 1000 x 1000,000 km3  = 1.353 10 9 km3 
= 1,027,000,000 
= 1027 x 1000000 
= 1.027 x 1000 x 1000000 
= 1.027 10 9 
 
D

No comments:

Post a Comment

4 4 4 4 4 4 4 .....роЕрок்рокроЯி роЗрои்род ‘роиாро▓ு’роХ்роХு роОрой்ройродாроЩ்роХ ро╕்рокெро╖ро▓்....?????

4 4 4 4 4 4 4 .....роЕрок்рокроЯி роЗрои்род ‘роиாро▓ு’роХ்роХு роОрой்ройродாроЩ்роХ ро╕்рокெро╖ро▓்....????? 01. ‘роиாро▓ு’ рокேро░ு ‘роиாро▓ு’ ро╡ிродрооா рокேроЪுро╡ாроЩ்роХ. 02. ‘роиாро▓ு’ рокேро░ுроХ்роХு роиро▓்ро▓родு роироЯроХ...