Class – 7 CH-13 EXPONENTS AND POWERS
MATHS NCERT SOLUTIONS
Exercise 13.1
Question 1:
Find the value of:
(i) 26 (ii) 93 (iii) 112 (iv) 54
SOLUTION 1:
(i) 26 = 2 x 2 x 2 x 2 x 2 x 2 = 64
(ii) 93 = 9 x 9 x 9 = 729
(iii) 112 = 11 x 11 = 121
(iv) 54= 5 x 5 x 5 x 5 = 625
Question 2:
Express the following in exponential form:
(i) 6 x 6 x 6 x 6 (ii) tt
(iii) b b b b (iv) 5 x 5 x 7 x 7 x 7
(v) 2 2 a a (vi) a a a c c c c d
SOLUTION 2:
(i) 6 x 6 x 6 x 6 = 64
(ii) t t t2
(iii) b b b b b4
(iv) 5 x 5 x 7 x 7 x 7 = 52 x 73
(v) 2 2 a a 22 a2
(vi) a a a c c c c d a3 c4 d
Question 3:
Express each of the following numbers using exponential notation:
(i) 512 (ii) 343 (iii) 729 (iv) 3125
SOLUTION 3:
(i) 512
(ii)
(iii)
(iv)
2 512
2 256
2 128
2 64
2 32
2 16
2 8
2 4
2 2
1
512 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 29
343
7 343
7 49
7 7
1
343 = 7 x 7 x 7 = 73
729
3 729
3 243
3 81
3 27
3 9
3 3
1
729 = 3 x 3 x 3 x 3 x 3 x 3 = 36
3125
5 3125
5 625
5 125
5 25
5 5
1
3125 = 5 x 5 x 5 x 5 x 5
Question 4:
Identify the greater number, wherever possible, in each of the following:
(i) 43 and 34 (ii) 53 or 35
(iii) 28 or 82 (iv) 1002 or 2100
(v) 210 or 102 SOLUTION 4:
(i) 43 = 4 x 4 x 4 = 64
34 = 3 x 3 x 3 x 3 = 81
Since 64 < 81
Thus, 34 is greater than 43.
(ii) 53 = 5 x 5 x 5 = 125
35 = 3 x 3 x 3 x 3 x 3 = 243
Since, 125 < 243
Thus, 34 is greater than 53.
(iii) 28 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 256
82 = 8 x 8 = 64
Since, 256 > 64
Thus, 28 is greater than 82.
(iv) 1002 = 100 x 100 = 10,000
2100 = 2 x 2 x 2 x 2 x 2 x …..14 times x ……… x 2 = 16,384 x ….. x 2
Since, 10,000 < 16,384 x ……. x 2 Thus, 2100 is greater than 1002.
(v) 210 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 1,024
102 = 10 x 10 = 100
Since, 1,024 > 100
Thus, 210 > 102
Question 5:
Express each of the following as product of powers of their prime factors:
(i) 648 (ii) 405 (iii) 540 (iv) 3,600
SOLUTION 5:
(i) 648 = 23 x 34
2 648
2 324
2 162
3 81
3 27
3 9
3 3
1
(ii) 405 = 5 x 34
5 405
3 81
3 27
3 9
3 3
1
(iii) 540 = 22 x 33 x 5
2 540
2 270
3 135
3 45
3 15
5 5
1
4
(iv) 3,600 = 24 x 32 x 52
Question 6:
Simplify:
(i) 2 x 103 (ii)
(iii) 23 x 5 (iv)
(v) 0 x 102 (vi) (vii) 24 x 32 (viii)
SOLUTION 6:
(i) 2 x 103 = 2 x 10 x 10 x 10
(ii) 72 x 22 = 7 x 7 x 2 x 2
(iii) 23 x 5 = 2 x 2 x 2 x 5
(iv) 3 x 44 = 3 x 4 x 4 x 4 x 4
(v) 0 x 102 = 0 x 10 x 10
(vi) 53 x 33 = 5 x 5 x 3 x 3 x 3
(vii) 24 x 32 = 2 x 2 x 2 x 2 x 3 x 3
(viii) 32 x 104 = 3 x 3 x 10 x 10 x 10 x 10
Question 7:
Simplify:
(i) 43 (ii)
(iii) 32 52 (iv)
SOLUTION 7:
(i) 43 4 4 4 64
2 3600
2 1800
2 900
2 450
3 225
3 75
5 25
5 5
1
72 x 22 3 x 44
52 x 33
32 x 104
= 2,000
= 196
= 40
= 768
= 0
= 675
= 144
= 90,000
3 23
23 103
(ii) 3 23 3 2 2 2 24
(iii) 32 52 3 3 5 5 225
(iv) 23 103 2 2 2 10 10 10
Question 8:
Compare the following numbers:
(i) 2.7 x 1012; 1.5 x 108 (ii) 4 x 1014; 3 x 1017 SOLUTION 8:
(i) 2.7 x 1012 and 1.5 x 108
On comparing the exponents of base 10,
2.7 x 1012 > 1.5 x 108
(ii) 4 x 1014 and 3 x 1017
On comparing the exponents of base 10,
4 x 1014 < 3 x 1017
6
Exercise 13.2
Question 1:
Using laws of exponents, simplify and write the SOLUTION in exponential form:
(i) 32 x 34 x 38 (ii) 615 610
(iii) a3a2 (iv) 7x 72
(v) (52)2 53 (vi) 25 x 55
(vii) a b4 4 (viii) (34)3
(ix) (220 215) x 23 (x) 8 8t 2
SOLUTION 1:
(i) 3 3 3 32 4 8 2 4 8 314 a a am n m n
(ii) 615 610 615 10 65 a a am n m n
(iii) a a a3 2 3 2 a5 a a am n m n
(iv) 7x 72 7x2 a a am n m n
(v) 523 5 53 2 3 5 5 53 6 3 amn am n
= 56 3 53 a a am n m n
(vi) 2555 2 5 5 105 a bm m a b m
(vii) a b4 4 a b 4 a bm m a b m
(viii) 343 = 34 3 312 amn am n
(ix) 220 21523 = 220 15 23 a a am n m n
= 2 2 25 3 5 3 28 a a am n m n
(x) 8t 82 8t2 a a am n m n
Question 2:
Simplify and express each of the following in exponential form:
(i) 2 3 433 32 4 (ii) 5235457
4 53 (iv) 3 7 11 2 8
(iii) 25
21 11
(v) 37 0 30 40
(vi) 2
3 34 3
(vii) 20 30 40 (viii) 30 2050
28a5 a5 8
(ix) 43a3 (x) a3 a
(xi) 4455a ba b5 28 3 (xii) 3 22 2
SOLUTION 2:
2 3 4 2 3 23 4 3 4 2 23 2 34
(i) 3 32 3 2 5 3 2 5 a a am n m n
3 2
= 20 33 = 1 3 3 33
3 n
= 54 25 5 34 3 a a am n m n 2 35
(ii) 52 5457 565457 am am n
= 56 4 57 510 57 a a am n m n
= 510 7 53 a a am n m n
(iii) 25 54 3 524 5 5 53 8 3 amn am n
= 58 3 55 a a am n m n
3 7 11 3 7 11
(iv) 21 112 3 8 3 7 11 2 38 31 1 72 1 118 3 a a am n m n
= 30 71 115 = 7 11 5
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)
37 37 37
3 3 34 3 4 3 37
= 37 7 30 1
20 30 40 1 1 1 3
20 30 40 1 1 1 1
30 2050 1 1 1 2 1 2
28a5 28a5 28a5
3 a3 223a3 26a3 4
= 28 6 a5 2 22 a2
= 2a2
a5 8 a5 3 a8 a2 a8
a3 a
= a2 8 a10
45a b8 3 45 5 a8 5 b3 2 40 a3 b
45a b5 2
= 1 a b ab3 3
2 23 2 23 1 2 242
= 24 2 28
a a am n m n a a am n m n
a0 1
a0 1
a0 1
amn am n
a a am n m n a bm m a b m
a a am n m n a a am n m n
a a am n m n a0 1
a a am n m n
Question 3:
Say true or false and justify your SOLUTION:
(i) 10 x 1011 = 10011 (ii) 23 > 52
(iii) 23 x 32 = 65 (iv) 30 = (1000)0
SOLUTION 3:
(i) 10 10 11 10011
L.H.S. 101 11 = 1012 and R.H.S. 10211 1022
Since, L.H.S. R.H.S.
Therefore, it is false.
(ii) 23 52
L.H.S. 2 83 and R.H.S. 52 25
Since, L.H.S. is not greater than R.H.S.
Therefore, it is false.
(iii) 23 32 65
L.H.S. 23 32 8 9 72 and R.H.S. 65 7,776
Since, L.H.S. R.H.S.
Therefore, it is false.
(iv) 30 10000
L.H.S. 30 1 and R.H.S. 10000 = 1
Since, L.H.S. = R.H.S.
Therefore, it is true.
Question 4:
Express each of the following as a product of prime factors only in exponential form:
(i) 108 x 192 (ii) 270 (iii) 729 x 64 (iv) 768
SOLUTION 4:
(i) 108 x 192
(ii)
(iii)
108 x 192
270
270
729 x 64
729 x 64 2 192
2 96
2 48
2 24
2 12
2 6
3 3
1
= 2233263
= 22 6 33 1
= 28 34
2 108
2 54
3 27
3 9
3 3
1
2 270
3 135
3 45
3 15
5 5
1
= 2 35 5
= 36 26
2 64
2 32
2 16
2 8
2 4
2 2
1
3 729
3 243
3 81
3 27
3 9
3 3
1
(iv) 768
2 768
2 384
2 192
2 96
2 48
2 24
2 12
2 6
3 3
1
768 = 28 3
Question 5:
Simplify:
252 73
(i) 3
8 7
25 5
(ii) 3 2t4t8
10
3 10 255
(iii) 7 5 5
5 6
SOLUTION 5:
25273 25 2 73
(i) 837 2337
2 710 3
= 2 79
= 210 9 73 1 2 72
= 2 x 49
= 98
25 5 2 t8 5 52 2 t8
(ii) 103t4 5 2 3t4
52 2 t8 4
= 2 33 3
54 t4
= 2 53 3
54 3 t4
= 23
5t4
=
8
3 10 255 5 3 2 5 55 5 2
(iii) 5 67 5 = 57 2 35
3 2 5 55 5 5 2
= 5 2 37 5 5
3 2 55 5 5 2
= 5 2 37 5 5
3 2 55 5 7
= 5 2 37 5 5
= 25 5 35 5 55 5
= 20 30 50
= 1 x 1 x 1
= 1
7
Exercise 13.3
Question 1:
Write the following numbers in the expanded form:
279404, 3006194, 2806196, 120719, 20068
SOLUTION 1:
(i) 2,79,404 = 2,00,000 + 70,000 + 9,000 + 400 + 00 + 4
= 2 x 100000 + 7 x 10000 + 9 x 1000 + 4 x 100 + 0 x 10 + 4 x 1
= 2 10 5 7 104 9 103 4 102 0 101 4 100 (ii) 30,06,194 = 30,00,000 + 0 + 0 + 6,000 + 100 + 90 + 4
= 3 x 1000000 + 0 x 100000 + 0 x 10000 + 6 x 1000 + 1 x 100 + 9 x 10 + 4 x 1
= 3 10 6 0 105 0 104 6 103 1 102 9 10 4 100
(iii) 28,06,196 = 20,00,000 + 8,00,000 + 0 + 6,000 + 100 + 90 + 6
= 2 x 1000000 + 8 x 100000 + 0 x 10000 + 6 x 1000 + 1 x 100 + 9 x 10 + 6 x 1
= 2 10 6 8 105 0 104 6 103 1 102 9 10 6 100
(iv) 1,20,719 = 1,00,000 + 20,000 + 0 + 700 + 10 + 9
= 1 x 100000 + 2 x 10000 + 0 x 1000 + 7 x 100 + 1 x 10 + 9 x 1
= 1 10 5 2 104 0 103 7 102 1 101 9 100
(v) 20,068 = 20,000 + 00 + 00 + 60 + 8
= 2 x 10000 + 0 x 1000 + 0 x 100 + 6 x 10 + 8 x 1
= 2 10 4 0 103 0 102 6 101 8 100
Question 2:
Find the number from each of the following expanded forms:
(a) 8 x 104 + 6 x 103 + 0 x 102 + 4 x 101 + 5 x 100
(b) 4 x 105 + 5 x 103 + 3 x 102 + 2 x 100
(c) 3 x 104 + 7 x 102 + 5 x 100
(d) 9 x 105 + 2 x 102 + 3 x 101 SOLUTION 2:
(a) 8 x 104 + 6 x 103 + 0 x 102 + 4 x 101 + 5 x 100
= 8 x 10000 + 6 x 1000 + 0 x 100 + 4 x 10 + 5 x 1
= 80000 + 6000 + 0 + 40 + 5
= 86,045
(b) 4 x 105 + 5 x 103 + 3 x 102 + 2 x 100
= 4 x 100000 + 0 x 10000 + 5 x 1000 + 3 x 100 + 0 x 10 + 2 x 1
= 400000 + 0 + 5000 + 3000 + 0 + 2
= 4,05,302
(c) 3 x 104 + 7 x 102 + 5 x 100
= 3 x 10000 + 0 x 1000 + 7 x 100 + 0 x 10 + 5 x 1
= 30000 + 0 + 700 + 0 + 5
= 30,705
(d) 9 x 105 + 2 x 102 + 3 x 101
= 9 x 100000 + 0 x 10000 + 0 x 1000 + 2 x 100 + 3 x 10 + 0 x 1
= 900000 + 0 + 0 + 200 + 30 + 0
= 9,00,230
Question 3:
Express the following numbers in standard form:
(i) 5,00,00,000 (ii) 70,00,000
(iii) 3,18,65,00,000 (iv) 3,90,878
(v) 39087.8 (vi) 3908.78
SOLUTION 3:
(i) 5,00,00,000 = 5 x 1,00,00,000 = 5 10 7
(ii) 70,00,000 = 7 x 10,00,000 = 7 10 6
(iii) 3,18,65,00,000 = 31865 x 100000
= 3.1865 x 10000 x 100000 = 3.1865 10 9
(iv) 3,90,878 = 3.90878 x 100000 = 3.90878 10 5
(v) 39087.8 = 3.90878 x 10000 = 3.90878 10 4
(vi) 3908.78 = 3.90878 x 1000 = 3.90878 10 3
Question 4:
Express the number appearing in the following statements in standard form: (a) The distance between Earth and Moon is 384,000,000 m.
(b) Speed of light in vacuum is 300,000,000 m/s.
(c) Diameter of Earth id 1,27,56,000 m.
(d) Diameter of the Sun is 1,400,000,000 m.
(e) In a galaxy there are on an average 100,000,000,0000 stars.
(f) The universe is estimated to be about 12,000,000,000 years old.
(g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be 300,000,000,000,000,000,000 m.
(h) 60,230,000,000,000,000,000,000 molecules are contained in a drop of water weighing 1.8 gm.
(i) The Earth has 1,353,000,000 cubic km of sea water.
(j) The population of India was about 1,027,000,000 in march, 2001.
SOLUTION 4:
(a) The distance between Earth and Moon = 384,000,000 m
= 384 x 1000000 m
= 3.84 x 100 x 1000000
= 3.84 10 8 m
(b) Speed of light in vacuum = 300,000,000 m/s
= 3 x 100000000 m/s
= 3 10 8 m/s
(c) Diameter of the Earth = 1,27,56,000 m
= 12756 x 1000 m
= 1.2756 x 10000 x 1000 m
= 1.2756 10 7 m
(d) Diameter of the Sun = 1,400,000,000 m
= 14 x 100,000,000 m
= 1.4 x 10 x 100,000,000 m
= 1.4 10 9 m
(e) Average of Stars = 100,000,000,000
= 1 x 100,000,000,000
= 1 10 11
(f) Years of Universe = 12,000,000,000 years
= 12 x 1000,000,000 years
= 1.2 x 10 x 1000,000,000 years
= 1.2 10 10 years
(g) Distance of the Sun from the centre of the Milky Way Galaxy
= 300,000,000,000,000,000,000 m
= 3 x 100,000,000,000,000,000,000 m
= 3 10 20 m
(h) Number of molecules in a drop of water weighing 1.8 gm
= 60,230,000,000,000,000,000,000
= 6023 x 10,000,000,000,000,000,000
= 6.023 x 1000 x 10,000,000,000,000,000,000
= 6.023 10 22
(i) The Earth has Sea water
(j) The population of India
= 1,353,000,000 km3
= 1,353 x 1000000 km3
= 1.353 x 1000 x 1000,000 km3 = 1.353 10 9 km3
= 1,027,000,000
= 1027 x 1000000
= 1.027 x 1000 x 1000000
= 1.027 10 9
D
No comments:
Post a Comment