Class – 7 CH-12 ALGEBRAIC EXPRESSIONS
MATHS NCERT SOLUTIONS
Exercise 12.1
Question 1:
Get the algebraic expressions in the following cases using variables, constants and arithmetic operations:
(i) Subtraction of z from y.
(ii) One-half of the sum of numbers x and y.
(iii) The number z multiplied by itself.
(iv) One-fourth of the product of numbers p and q.
(v) Numbers x and y both squared and added.
(vi) Number 5 added to three times the product of m and n. (vii) Product of numbers y and z subtracted from 10. (viii) Sum of numbers a and b subtracted from their product.
SOLUTION 1:
(i) y z (ii)
2
(iii) z2 (iv) pq
4
(v) x2 y2 (vi) 3mn5
x y
(vii) 10 yz (viii) ab a b
Question 2:
(i) Identify the terms and their factors in the following expressions, show the terms and factors by tree diagram:
(a) x3 (b) 1 x x2 (c) y y 3
(d) 5xy2 7x y2 (e) ab 2b2 3a2
(ii) Identify the terms and factors in the expressions given below:
(a) 4x 5 (b) 4x 5y (c) 5y3y2
(d) xy2x y2 2 (e) pq q (f) 1.2ab2.4b3.6a
3 1 2 0.2q2
(g) x (h) 0.1p
4 4
SOLUTION 2:
(i) (a) x3
Expression
Terms
Factors
(b) 1 x x2
Expression
Terms
Factors
(c) y y 3
Expression
Terms
Factors
(d) 5xy2 7x y2
Expression
Terms
Factors
(e) ab 2b2 3a2
Expression
Terms
Factors
(ii) (a) 4x 5 (b) 4x 5y
Terms: 4x,5 Terms: 4x,5y
Factors: 4, ; x 5 Factors: 4, ; 5,x y
(c) 5y3y2 (d) xy2x y2 2
Terms: 5y y,3 2 Terms: xy x y,2 2 2
Factors: 5, ; 3, ,y y y Factors: x y, ; 2 , , ,x x y y
(e) pq q (f) 1.2ab2.4b3.6a
Terms: pq q, Terms: 1.2ab, 2.4 ,3.6 b a
Factors: p q q, ; Factors: 1.2, , ; a b 2.4, ; 3.6,b a
3 1
(g) x
4 4 (h) 0.1p2 0.2q2
3 1
Terms: x,
4 4 Terms: 0.1p2,0.2q2
3 1
Factors: , ; x Factors: 0.1, p p, ; 0.2, ,q q
4 4
Question 3:
Identify the numerical coefficients of terms (other than constants) in the following expressions:
(i) 53t2 (ii) 1 t t2 t3 (iii) x 2xy 3y
(iv) 100m1000n (v) p q2 2 7pq (vi) 1.2a0.8b
(vii) 3.14r2 (viii) 2l b (ix) 0.1y0.01y2
SOLUTION 3:
S.No. Expression Terms Numerical Coefficient
(i) 53t2 3t2 3
(ii) 1 t t2 t3 t 1
t2 1
t3 1
(iii) x 2xy 3y x 1
2xy 2
3y 3
(iv) 100m1000n 100m 100
1000n 1000
(v) p q2 2 7pq p q2 2 1
7 pq 7
(vi) 1.2a0.8b 1.2a 1.2
0.8b 0.8
(vii) 3.14r2 3.14r2 3.14
(viii) 2l b 2 2l b 2l
2b 2
2
(ix) 0.1y0.01y2 0.1y 0.1
0.01y2 0.01
Question 4:
(a) Identify terms which contain x and give the coefficient of x.
(i) y x y2 (ii) 13y2 8yx (iii) x y 2
(iv) 5 z zx (v) 1 x xy (vi) 12xy2 25
(vii) 7x xy 2
(b) Identify terms which contain y2 and give the coefficient of y2.
(i) 8xy2 (ii) 5y2 7x (iii) 2x y2 15xy2 7y2
SOLUTION 4:
(a)
S.No. Expression Term with factor x Coefficient of x
(i) y x y2 y x2 y2
(ii) 13y2 8yx 8yx 8y
(iii) x y 2 x 1
(iv) 5 z zx zx z
(v) 1 x xy x 1
xy y
(vi) 12xy2 25 12xy2 12y2
(vii) 7x xy 2 xy2 y2
7x 7
(b)
S.No. Expression Term contains y2 Coefficient of y2
(i) 8xy2 xy2 x
(ii) 5y2 7x 5y2 5
(iii) 2x y2 15xy2 7y2 15xy2 15x
7y2 7
Question 5:
Classify into monomials, binomials and trinomials:
(i) 4y 7x (ii) y2 (iii) x y xy
(iv) 100 (v) ab a b (vi) 53t
(vii) 4p q2 4pq2 (viii) 7mn (ix) z2 3z 8
(x) a2 b2 (xi) z2 z (xii) 1 x x2
SOLUTION 5:
S.No. Expression Type of Polynomial
(i) 4y7z Binomial
(ii) y2 Monomial
(iii) x y xy Trinomial
(iv) 100 Monomial
(v) ab a b Trinomial
(vi) 5 3 t Binomial
(vii) 4p q2 4pq2 Binomial
(viii) 7mn Monomial
(ix) z2 3z 8 Trinomial
(x) a2 b2 Binomial
(xi) z2 z Binomial
(xii) 1 x x2 Trinomial
Question 6:
State whether a given pair of terms is of like or unlike terms:
(i) 1, 100 (ii) 7x x, (iii) 29x,29y
(iv) 14xy,42yx (v) 4m p mp2 ,4 2 (vi) 12xz,12x z2 2
SOLUTION 6:
S.No. Pair of terms Like / Unlike terms
(i) 1, 100 Like terms
(ii) 7x x, Like terms
(iii) 29x,29y Unlike terms
(iv) 14xy,42yx Like terms
(v) 4m p mp2 ,4 2 Unlike terms
(vi) 12xz,12x z2 2 Unlike terms
Question 7:
Identify like terms in the following:
(a) xy2, 4 yx x2,8 2,2xy2,7 , 11y x2 100 , 11x yx,20x y2 , 6 x y xy x2, ,2 ,3
(b) 10pq p q p q,7 ,8 , 2 2, 7 qp, 100 , 23,12 q q p2 2, 5 p2,41,2405 ,78p qp,13p q qp2 , 2,701p2
SOLUTION 7:
(a) Like terms are:
(i) xy xy2,2 2 (ii) 4yx2,20x y2 (iii) 8x2, 11 x2, 6 x2
(iv) 7y y,
(b) Like terms are: (v) 100 ,3x x (vi) 11yx xy,2
(i) 10pq, 7 pq,78pq (ii) 7 ,2405p p (iii) 8 , 100q q
(iv) p q2 2,12p q2 2 (v) 12,41 (vi) 5p2,701p2
(vii) 13p q qp2 , 2
Exercise 12.2
Question 1:
Simplify combining like terms:
(i) 21b 32 7b 20b
(ii) z2 13z2 5x 7z3 15z
(iii) p p q q q p
(iv) 3 2a b ab a b ab3ab b a
(v) 5x y2 5x2 3yx2 3y2 x2 y2 8xy2 3y2 (vi) 3y2 5 4y 8y y 2 4 SOLUTION 1:
(i) 21 32 7 20 21 7 20 32b b b b b b
= 28 20 32b b = 8 32b
(ii) z2 13z2 5 7z z3 15 7z z3 z2 13z25 15z z
= 7z3 12z2 20z
(iii) p p q q q p p p q q q p
= p p p q q q = p q
(iv) 3a 2b ab a b ab3ab b a 3a 2b ab a b ab 3ab b a
= 3a a a 2b b b ab ab 3ab
= 3a a a 2b b b ab ab 3ab
= a 0 ab
= a ab
(v)
5x y2 5x2 3yx2 3y2 x2 y2 8xy2 3y2 5x y2 3yx2 8xy2 5x2 x2 3y2 y2 3y2
= 5x y2 3x y2 8xy2 5x2 x23y2 y2 3y2
= 8x y2 8xy2 4x2 7y2
(vi) 3y2 5 4y 8y y 2 4 3 y2 5 4 8y y y 2 4
= 3y2 y25 8y y4 4
= 4y2 3y 0 = 4y2 3y
Question 2:
Add:
(i) 3mn, 5 mn,8mn4mn
(ii) t 8tz,3tz z z, t
(iii) 7mn5,12mn 2,9mn 8, 2mn3
(iv) a b 3,b a 3,a b 3
(v) 14x10y 12xy 13,18 7x 10y8xy,4xy
(vi) 5m7n n,3 4m 2,2m3mn5
(vii) 4x y2 , 3 xy2, 5 xy x y2,5 2
(viii) 3p q2 2 4pq 5, 10p q2 2,159pq7p q2 2
(ix) ab4a,4bab,4a4b
(x) x2 y2 1, y2 1 x2,1 x2 y2 SOLUTION 2:
(i) 3mn, 5 mn mn,8 , 4 mn 3mn 5mn8mn 4mn
= 3 5 8 4mn = 2mn
(ii) t 8tz tz,3 z z, t t 8tz 3tz z z t
= t t 8 3tz tz z z
= 1 1 t 8 3tz 1 1z
= 0 5 0 tz = 5tz
(iii) 7mn5,12mn2,9mn 8, 2mn 3 7mn 5 12mn 2 9mn 8 2mn3
= 7mn12mn9mn2mn 5 2 8 3
= 7 12 9 2mn 7 11
= 12mn4
(iv) a b 3,b a 3,a b 3 a b 3 b a 3 a b 3
= a a a b b b 3 3 3
= a b 3
(v)
14x10y12xy13,18 7x 10y8xy xy,4 14x10y12xy 13 18 7x 10y8xy 4xy
= 14x 7x 10y10y12xy8xy 4xy 13 18
= 7x 0y 0xy5 = 7 5x
(vi) 5m7n n,3 4m 2,2m3mn 5 5m 7n 3n 4m 2 2m 3mn5
= 5 4m m 2 7 3 3m n n mn 2 5
= 5 4 2m 7 3n3mn3
= 3 4 3m n mn3
(vii) 4x y2 , 3 xy2, 5 xy x y2,5 2 4x y2 ( 3xy2) ( 5xy2)5x y2
= 4x y2 5x y2 3xy2 5xy2
= 9x y2 8xy2
(viii) 3p q2 2 4pq 5, 10p q2 2,159pq7p q2 2
= 3p q2 2 4pq 5 10p q2 215 9 pq7p q2 2
= 3p q2 2 10p q2 2 7p q2 2 4pq9pq 5 15
= 3 10 7 p q2 2 4 9 pq 20 = 0p q2 2 5pq20 = 5pq 20
(ix) ab4a b ab a ab ab,4 ,4 4a 4b ab 4a ab
= 4 4 4 4a a b b ab ab
= 0 0 0 0
(x) x2 y2 1,y2 1 x2,1 x2 y2
= x2 y2 1 y2 1 x2 1 x2 y2
= x x x2 2 2 y2 y2 y2 1 1 1
= 1 1 1 x2 1 1 1y2 1 1 1
= x2 y2 1
Question 3:
Subtract:
(i) 5y2 from y2
(ii) 6xy from 12xy
(iii) a b from a b
(iv) a b 5 from b5a
(v) m2 5mn from 4m2 3mn8
(vi) x2 10x5 from 5x10
(vii) 5a2 7ab5b2 from 3ab2a2 2b2
(viii) 4pq5q2 3p2 from 5p2 3q2 pq
SOLUTION 3:
(i) y2 5y2 = y2 5y2
= 6y2
(ii) 12xy6xy = 12xy6xy
= 18xy
(iii) a b a b= a b a b
= a a b b
= 2b
(iv) b5 a a b 5
= 5b ab ab 5a
= 5 2b ab5a
= 5 5 2a b ab (v) 4m2 3mn 8 m2 5mn
= 4m2 3mn 8 m2 5mn
= 4m2 m2 3mn5mn8
= 5m2 8mn8
(vi) 5 10x x2 10 5x
= 5x 10 x2 10x5
= x2 5x 10x 10 5
= x2 5x 5
(vii) 3ab2a2 2b2 5a2 7ab5b2
= 3ab2a2 2b2 5a2 7ab5b2
= 3ab7ab2a2 5a2 2b2 5b2
= 10ab7a2 7b2
= 7a2 7b2 10ab
(viii) 5p2 3q2 pq4pq5q2 3p2
= 5p2 3q2 pq 4pq5q2 3p2
= 5p2 3p2 3q2 5q2 pq 4pq
= 8p2 8q2 5pq
Question 4:
(a) What should be added to x2 xy y2 to obtain 2x2 3xy? (b) What should be subtracted from 2a 8b 10 to get 3a 7b 16 ?
SOLUTION 4:
(a) Let p should be added. Then according to question,
x2 xy y2 p 2x2 3xy
p2x2 3xyx2 xy y 2
p2x2 3xy x 2 xy y2
p 2x2 x2 y2 3xy xy
p x 2 y2 2xy
Hence, x2 y2 2xy should be added.
(b) Let q should be subtracted.
Then according to question,
2a 8b 10 q 3a 7b 16
q 3a 7b 16 2a 8b 10
q 3a 7b 16 2a 8b 10
q 3a 2a 7b 8b 16 10
q 5a b 6
q 5a b 6
q 5a b 6
Question 5: What should be taken away from 3x2 4y2 5xy20 to obtain x2 y2 6xy20 ?
SOLUTION 5:
Let q should be subtracted.
Then according to question,
3x2 4y2 5xy 20 q x2 y2 6xy20
q3x2 4y2 5xy20 x2 y2 6xy20
q3x2 4y2 5xy 20 x2 y2 6xy20
q3x2 x2 4y2 y2 5xy6xy 20 20
q4x2 3y xy2 0
Hence, 4x2 3y xy2 should be subtracted.
Question 6:
(a) From the sum of 3x – y + 11 and – y – 11, subtract 3x – y – 11.
(b) From the sum of 4 + 3x and 5 – 4x + 2x2, subtract the sum of 3x2 – 5x and –x2 + 2x + 5.
SOLUTION 6:
(a) According to question,
3x y 11 y 11 3x y 11 = 3x y 11 y 11 3x y 11
= 3x 3x y y y 11 11 11
= 33x 1 1 1y 11 11 11
= 0x y 11 = y 11
(b) According to question,
4 3 x5 4 2 x x2 3x2 5x x2 2 5x
= 4 3 5 4 2 x x x2 3x2 5x x 2 2 5x = 2x2 3 4 5 4x x 3x2 x2 2 5 5x x
= 2x2 x 9 2x2 3 5x
= 2x2 x 9 2x2 3x 5
= 2x2 2x2 x 3x 9 5
= 2 4x
Exercise 12.3
If m 2, find the value of:
(i) m2 (ii) 3m5 (iii) 95m
(iv) 3m2 2m 7 (v) 5m 4
2
Question 1:
SOLUTION 1:
(i) m2 = 22 [Putting m 2 ]
= 0
(ii) 3m5 = 3 2 5 [Putting m 2 ]
= 6 – 5 = 1
(iii) 95m = 9 – 5 x 2 [Putting m 2 ]
= 9 – 10 = 1 (iv) 3m2 2m 7
= 3 2 2 2 2 7 [Putting m 2 ]
= 3 x 4 – 2 x 2 – 7
= 12 – 4 – 7
= 12 – 11 = 1
5m 5 2
(v) 4 = 4 [Putting m 2 ]
2 2
= 5 – 4 = 1
Question 2:
If p2, find the value of:
(i) 4p7 (ii)
SOLUTION 2:
3p2 4p 7 (iii) 2p3 3p2 4p 7
(i) 4p7 = 4 2 7 [Putting p 2]
= 8 7 = 1
(ii) 3p2 4p 7
= 3 2 2 4 2 7 [Putting p 2]
= 3 4 8 7
= 12 8 7
= 20 7 = 13
(iii) 2p3 3p2 4p 7
= 2 2 3 3 2 2 4 2 7
= 2 8 3 4 8 7
= 16 12 8 7
= 20 23 = 3
Question 3:
Find the value of the following expressions, when x1:
(i) 2x7 (ii) x 2 (iii)
(iv) 2x2 x 2
SOLUTION 3:
(i) 2x7 = 2 1 7
= 2 7 = 9
(ii) x 2 = 1 2
= 1 + 2 = 3
(iii) x2 2x 1 = 12 2 1 1
= 1 – 2 + 1
= 2 – 2 = 0
(iv) 2x2 x 2 = 2 1 2 1 2
= 2 x 1 + 1 – 2
= 2 + 1 – 2
= 3 – 2 = 1
Question 4:
If a 2,b 2, find the value of:
(i) a2 b2 (ii) a2 ab b2
SOLUTION 4:
(i) a2 b2 = 22 22
= 4 + 4 = 8
(ii) a2 ab b2
= 22 2 2 22 = 4 – 4 + 4 = 4
[Putting p 2] x2 2x 1
[Putting x1]
[Putting x 1]
[Putting x1]
[Putting x1]
(iii) a2 b2
[Putting a 2,b 2 ]
[Putting a 2,b 2 ]
(iii) a2 b2 = 22 22 [Putting a 2,b 2 ]
= 4 – 4 = 0
Question 5:
When a 0,b 1, find the value of the given expressions:
(i) 2a2b (ii) 2a2 b2 1 (iii) 2a b2 2ab2 ab (iv) a2 ab 2
SOLUTION 5:
(i) 2a2b = 2 0 2 1 [Putting a 0,b 1]
= 0 – 2 = 2
(ii) 2a2 b2 1 = 2 0 2 1 12 [Putting a 0,b 1]
= 2 x 0 + 1 + 1 = 0 + 2 = 2
(iii) 2a b2 2ab2 ab = 2 0 2 1 2 0 1 2 0 1 [Putting a 0,b 1]
= 0 + 0 + 0 = 0
(iv) a2 ab 2 = 02 0 1 2 [Putting a 0,b 1]
= 0 + 0 + 2 = 2
Question 6:
Simplify the expressions and find the value if x is equal to 2:
(i) x 7 4x5 (ii) 3x 2 5 7 x
(iii) 6x5x 2 (iv) 4 2 x 1 3x 11
SOLUTION 6:
(i) x 7 4x5 = x 7 4x 20 = x 4x 7 20
= 5x13 = 5 2 13 [Putting x 2]
= 10 13 = 3
(ii) 3x 2 5 7 x = 3x 6 5x 7 = 3x 5x 6 7
= 8x1 = 8 x 2 – 1 [Putting x1]
= 16 – 1 = 15
(iii) 6 5x x2 = 6x 5x 10 = 11x10
= 11 x 2 – 10 [Putting x1]
= 22 – 10 = 12
(iv) 4 2 1 3 11 x x = 8x 4 3x 11 = 8x 3x 4 11
= 11x7 = 11 x 2 + 7 [Putting x1]
= 22 + 7 = 29
Question 7:
Simplify these expressions and find their values if x 3,a 1,b 2:
(i) 3x 5 x 9 (ii) 2 8x 4x 4
(iii) 3a 5 8a 1 (iv) 10 3b 4 5b
(v) 2a 2b 4 5 a
SOLUTION 7:
(i) 3x 5 x 9 = 3x x 5 9 = 2x4
= 2 3 4 [Putting x 3]
= 6 + 4 = 10
(ii) 2 8x 4x 4 = 8x 4x 2 4 = 4x 6
= 4 3 6 [Putting x 3]
= 12 6 12
(iii) 3a 5 8a 1 = 3a 8a 5 1 = 5a 6
= 5 1 6 [Putting a1]
= 5 + 6 = 11
(iv) 10 3b 4 5b = 3b 5b 10 4 = 8b 6
= 8 2 6 [Putting b2]
= 16 + 6 = 22
(v) 2a 2b 4 5 a = 2a a 2b 4 5
= 3a 2b 9 = 3 1 2 2 9 [Putting a 1, b2]
= 3 4 9 = 8
Question 8:
(i) If z 10, find the value of z3 3z10 .
(ii) If p 10, find the value of p2 2p 100.
SOLUTION 8:
(i) z3 3z 10 = 103 310 10 [Putting z10]
= 1000 – 3 x 0 = 1000 – 0
= 1000
(ii) p2 2p 100 = 102 2 10 100 [Putting p 10 ]
= 100 20 100 = 20
Question 9:
What should be the value of a if the value of 2x2 x a equals to 5, when x 0 ?
SOLUTION 9:
Given: 2x2 x a 5
2
2 0 0 a 5 [Putting x 0]
0 0 a 5
a5
Hence, the value of a is 5.
Question 10:
Simplify the expression and find its value when a 5 and b3: 2a ab2 3 ab SOLUTION 10:
Given: 2a ab2 3 ab
2a2 2ab 3 ab
2a2 2ab ab 3
2a2 ab 3
2 5 2 5 3 3 [Putting a 5, b3]
2 x 25 – 15 + 3
50 – 15 + 3
38
Exercise 12.4
Question 1:
Observe the patterns of digits made from line segments of equal length. You will find such segmented digits on the display of electronic watches or calculators.
(a) … …
6 11 16 21… 5n1 ...
(b) …
4
7 10 13… 3n1 ...
(c) …
7 12 17 22… 5n 2 ...
If the number of digits formed is taken to be n, the number of segments required to form n digits is given by the algebraic expression appearing on the right of each pattern.
How many segments are required to form 5, 10, 100 digits of the kind
SOLUTION 1:
S. No. Symbol Digit’s number Pattern’s Formulae No. of Segments
(i) 5 5n1 26
10 51
100 501
(ii) 5 3n1 16
10 31
100 301
(iii) 5 5n2 27
10 52
100 502
(i) 5n1
Putting n 5, 5 x 5 + 1 = 25 + 1 = 26
Putting n 10, 5 x 10 + 1 = 50 + 1 = 51
Putting n 100, 5 x 100 + 1 = 500 + 1 = 501
(ii) 3n1
Putting n 5, 3 x 5 + 1 = 15 + 1 = 16
Putting n 10, 3 x 10 + 1 = 30 + 1 = 31
Putting n 100, 3 x 100 + 1 = 300 + 1 = 301
(iii) 5n2
Putting n 5, 5 x 5 + 2 = 25 + 2 = 27
Putting n 10, 5 x 10 + 2 = 50 + 2 = 52
Putting n 100, 5 x 100 + 2 = 500 + 2 = 502
(i) 2n1
Putting n 100, 2 x 100 – 1 = 200 – 1 = 199
(ii) 3n2
Putting n 5, 3 x 5 + 2 = 15 + 2 = 17
Question 2:
Use the given algebraic expression to complete the table of number patterns:
S.No. Expression Terms
1st 2nd 3rd 4th 5th … 10th … 100th …
(i) 2n1 1 3 5 7 9 --- 19 --- --- ---
(ii) 3n2 2 5 8 11 --- --- --- --- --- ---
(iii) 4n1 5 9 13 17 --- --- --- --- --- ---
(iv) 7n20 27 34 41 48 --- --- --- --- --- ---
(v) n2 1 2 5 10 17 --- --- --- --- 10001 ---
SOLUTION 2:
Putting n 10, 3 x 10 + 2 = 30 + 2 = 32
Putting n 100, 3 x 100 + 2 = 300 + 2 = 302
(iii) 4n1
Putting n 5, 4 x 5 + 1 = 20 + 1 = 21
Putting n 10, 4 x 10 + 1 = 40 + 1 = 41
Putting n 100, 4 x 100 + 1 = 400 + 1 = 401
(iv) 7n20
Putting n 5, 7 x 5 + 20 = 25 + 20 = 55
Putting n 10, 7 x 10 + 20 = 70 + 20 = 90
Putting n 100, 7 x 100 + 20 = 700 + 20 = 720
(v) n2 1
Putting n 5, 5 x 5 + 1 = 25 + 1 = 26
Putting n 10, 10 x 10 + 1 = 100 + 1 = 101
Putting n 100, 100 x 100 + 1 = 10000 + 1 = 10001
Now complete table is,
S.No. Expression Terms
1st 2nd 3rd 5th … 10th … 100th …
(i) 2n1 1 3 5 7 9 --- 19 --- 199 ---
(ii) 3n2 2 5 8 11 17 --- 32 --- 302 ---
(iii) 4n1 5 9 13 17 21 --- 41 --- 401 ---
(iv) 7n20 27 34 41 48 55 --- 90 --- 720 ---
(v) n2 1 2 5 10 17 26 --- 101 --- 10001 ---
No comments:
Post a Comment