Class – 7 CH-12 ALGEBRAIC EXPRESSIONS
MATHS NCERT SOLUTIONS
Exercise 12.1
Question 1:
Get the algebraic expressions in the following cases using variables, constants and arithmetic operations:
(i) Subtraction of z from y.
(ii) One-half of the sum of numbers x and y.
(iii) The number z multiplied by itself.
(iv) One-fourth of the product of numbers p and q.
(v) Numbers x and y both squared and added.
(vi) Number 5 added to three times the product of m and n. (vii) Product of numbers y and z subtracted from 10. (viii) Sum of numbers a and b subtracted from their product.
SOLUTION 1:
(i) y zï€ (ii) 
2
(iii) z2 (iv) pq
4
(v) x2 y2 (vi) 3mn5
x y
(vii) 10ï€ yz (viii) abï€ ï€«ï€¨a b
Question 2:
(i) Identify the terms and their factors in the following expressions, show the terms and factors by tree diagram:
(a) xï€3 (b) 1 x x2 (c) y yï€ 3
(d) 5xy2 7x y2 (e) ï€ ï€«ab 2b2 ï€3a2
(ii) Identify the terms and factors in the expressions given below:
(a) ï€ ï€«4x 5 (b) ï€ ï€«4x 5y (c) 5y3y2
(d) xy2x y2 2 (e) pq q (f) 1.2abï€2.4b3.6a
3 1 2 0.2q2
(g) x (h) 0.1p 
4 4
SOLUTION 2:
(i) (a) xï€3
Expression
Terms
Factors
(b) 1 x x2
Expression
Terms
Factors
(c) y yï€ 3
Expression
Terms
Factors
(d) 5xy2 7x y2
Expression
Terms
Factors
(e) ï€ ï€«ab 2b2 ï€3a2
Expression
Terms
Factors
(ii) (a) ï€ ï€«4x 5 (b) ï€ ï€«4x 5y
Terms: ï€4x,5 Terms: ï€4x,5y
Factors: ï€4, ; x 5 Factors: ï€4, ; 5,x y
(c) 5y3y2 (d) xy2x y2 2
Terms: 5y y,3 2 Terms: xy x y,2 2 2
Factors: 5, ; 3, ,y y y Factors: x y, ; 2 , , ,x x y y
(e) pq q (f) 1.2abï€2.4b3.6a
Terms: pq q, Terms: 1.2ab, 2.4 ,3.6ï€ b a
Factors: p q q, ; Factors: 1.2, , ; a b ï€2.4, ; 3.6,b a
3 1
(g) x
4 4 (h) 0.1p2 0.2q2
3 1
Terms: x,
4 4 Terms: 0.1p2,0.2q2
3 1
Factors: , ; x Factors: 0.1, p p, ; 0.2, ,q q
4 4
Question 3:
Identify the numerical coefficients of terms (other than constants) in the following expressions:
(i) 5ï€3t2 (ii) 1  t t2 t3 (iii) x 2xy 3y
(iv) 100m1000n (v) ï€p q2 2 7pq (vi) 1.2a0.8b
(vii) 3.14r2 (viii) 2l b (ix) 0.1y0.01y2
SOLUTION 3:
S.No. Expression Terms Numerical Coefficient
(i) 5ï€3t2 ï€3t2 ï€3
(ii) 1  t t2 t3 t 1
t2 1
t3 1
(iii) x 2xy 3y x 1
2xy 2
3y 3
(iv) 100m1000n 100m 100
1000n 1000
(v) ï€p q2 2 7pq ï€p q2 2 ï€1
7 pq 7
(vi) 1.2a0.8b 1.2a 1.2
0.8b 0.8
(vii) 3.14r2 3.14r2 3.14
(viii) 2l   b 2 2l b 2l
2b 2
2
(ix) 0.1y0.01y2 0.1y 0.1
0.01y2 0.01
Question 4:
(a) Identify terms which contain x and give the coefficient of x.
(i) y x y2  (ii) 13y2 ï€8yx (iii) x y 2
(iv) 5 z zx (v) 1 x xy (vi) 12xy2 25
(vii) 7x xy 2
(b) Identify terms which contain y2 and give the coefficient of y2.
(i) 8ï€xy2 (ii) 5y2 7x (iii) 2x y2 ï€15xy2 7y2
SOLUTION 4:
(a)
S.No. Expression Term with factor x Coefficient of x
(i) y x y2  y x2 y2
(ii) 13y2 ï€8yx ï€8yx ï€8y
(iii) x y 2 x 1
(iv) 5 z zx zx z
(v) 1 x xy x 1
xy y
(vi) 12xy2 25 12xy2 12y2
(vii) 7x xy 2 xy2 y2
7x 7
(b)
S.No. Expression Term contains y2 Coefficient of y2
(i) 8ï€xy2 ï€xy2 ï€x
(ii) 5y2 7x 5y2 5
(iii) 2x y2 ï€15xy2 7y2 ï€15xy2 ï€15x
7y2 7
Question 5:
Classify into monomials, binomials and trinomials:
(i) 4y ï€7x (ii) y2 (iii) x ï€y xy
(iv) 100 (v) ab a bï€ ï€ (vi) 5ï€3t
(vii) 4p q2 ï€4pq2 (viii) 7mn (ix) z2 ï€ ï€«3z 8
(x) a2 b2 (xi) z2 z (xii) 1 x x2
SOLUTION 5:
S.No. Expression Type of Polynomial
(i) 4yï€7z Binomial
(ii) y2 Monomial
(iii) x ï€y xy Trinomial
(iv) 100 Monomial
(v) ab a bï€ ï€ Trinomial
(vi) 5 3ï€ t Binomial
(vii) 4p q2 ï€4pq2 Binomial
(viii) 7mn Monomial
(ix) z2 ï€ ï€«3z 8 Trinomial
(x) a2 b2 Binomial
(xi) z2 z Binomial
(xii) 1 x x2 Trinomial
Question 6:
State whether a given pair of terms is of like or unlike terms:
(i) 1, 100 (ii) ï€7x x, (iii) ï€29x,ï€29y
(iv) 14xy,42yx (v) 4m p mp2 ,4 2 (vi) 12xz,12x z2 2
SOLUTION 6:
S.No. Pair of terms Like / Unlike terms
(i) 1, 100 Like terms
(ii) ï€7x x, Like terms
(iii) ï€29x,ï€29y Unlike terms
(iv) 14xy,42yx Like terms
(v) 4m p mp2 ,4 2 Unlike terms
(vi) 12xz,12x z2 2 Unlike terms
Question 7:
Identify like terms in the following:
(a) ï€xy2, 4ï€ yx x2,8 2,2xy2,7 , 11y ï€ x2 ï€100 , 11x ï€ yx,20x y2 , 6ï€ x y xy x2, ,2 ,3
(b) 10pq p q p q,7 ,8 ,ï€ 2 2, 7ï€ qp, 100 , 23,12ï€ q ï€ q p2 2, 5ï€ p2,41,2405 ,78p qp,13p q qp2 , 2,701p2
SOLUTION 7:
(a) Like terms are:
(i) ï€xy xy2,2 2 (ii) ï€4yx2,20x y2 (iii) 8x2, 11ï€ x2, 6ï€ x2
(iv) 7y y,
(b) Like terms are: (v) ï€100 ,3x x (vi) ï€11yx xy,2
(i) 10pq, 7ï€ pq,78pq (ii) 7 ,2405p p (iii) 8 , 100q ï€ q
(iv) ï€p q2 2,12p q2 2 (v) ï€12,41 (vi) ï€5p2,701p2
(vii) 13p q qp2 , 2
Exercise 12.2
Question 1:
Simplify combining like terms:
(i) 21bï€ ï€« ï€32 7b 20b
(ii) ï€ ï€«z2 13z2 ï€ ï€«5x 7z3 ï€15z
(iii) pï€ ï€ ï€ ï€ ï€ï€¨ p q q q p
(iv) 3 2aï€ ï€ ï€ ï€ ï€«b ab a b ab3ab ï€b a
(v) 5x y2 ï€5x2 3yx2 ï€3y2  ï€ ï€«x2 y2 8xy2 ï€3y2 (vi) 3y2  ï€ ï€5 4y  8y yï€ ï€2 4 SOLUTION 1:
(i) 21 32 7 20 21 7 20 32bï€ ï€« ï€b b  ï€b b bï€
= 28 20 32bï€ ï€b = 8 32bï€
(ii) ï€ ï€«z2 13z2 ï€5 7z z3 ï€15 7z z3  ï€ ï€«ï€¨ z2 13z2ï€ï€¨5 15z z
= 7z3 12z2 ï€20z
(iii) pï€ ï€ ï€ ï€ ï€ ï€½ ï€ ï€« ï€ ï€ ï€«ï€¨p q q q p p p q q q p
= pï€ ï€«  ï€ ï€p p q q q = p qï€
(iv) 3aï€ ï€ ï€ ï€ ï€«2b ab a b ab3ab ï€ ï€½ ï€ ï€ ï€ ï€« ï€ ï€«b a 3a 2b ab a b ab 3ab ï€b a
= 3a a aï€ ï€ ï€ ï€«  ï€ ï€ ï€«2b b b ab ab 3ab
= 3aï€ ï€ ï€a a 2bï€ ï€ ï€b b ab ï€ab 3ab
= aï€ ï€ ï€0  ab
= a ab
(v)
5x y2 ï€5x2 3yx2 ï€3y2  ï€ ï€«x2 y2 8xy2 ï€3y2 5x y2 3yx2 8xy2 ï€5x2  ï€x2 3y2 ï€ ï€y2 3y2
= 5x y2 3x y2 8xy2 ï€ï€¨5x2 ï€x2ï€ï€¨3y2 y2 3y2
= 8x y2 8xy2 ï€4x2 ï€7y2
(vi) 3y2 5 4yï€ ï€©ï€ï€¨8y yï€ 2 ï€4 3 y2 5 4 8yï€ ï€ y y 2 4
= 3y2 y25 8yï€ yï€ï€¨4 4ï€ ï€©
= 4y2 ï€ ï€3y 0 = 4y2 ï€3y
Question 2:
Add:
(i) 3mn, 5ï€ mn,8mnï€4mn
(ii) t ï€8tz,3tz ï€ z z, ï€t
(iii) ï€7mn5,12mn 2,9mnï€ ï€8, 2mnï€3
(iv) a ï€ ï€ ï€«b 3,b a 3,aï€ ï€«b 3
(v) 14x10y ï€12xy ï€13,18ï€ ï€7x 10y8xy,4xy
(vi) 5mï€7n n,3 ï€ ï€«4m 2,2mï€3mnï€5
(vii) 4x y2 , 3ï€ xy2, 5ï€ xy x y2,5 2
(viii) 3p q2 2 ï€4pq ï€5, 10p q2 2,159pq7p q2 2
(ix) abï€4a,4bï€ab,4aï€4b
(x) x2 ï€ ï€y2 1, y2 ï€ ï€1 x2,1ï€ ï€x2 y2 SOLUTION 2:
(i) 3mn, 5ï€ mn mn,8 , 4ï€ mn 3mn ï€ï€¨ 5mn8mn ï€ï€¨ 4mn
= 3ï€ ï€« ï€5 8 4mn = 2mn
(ii) t ï€8tz tz,3 ï€ ï€ ï€½ ï€ ï€« ï€ ï€« ï€z z, t t 8tz 3tz z z t
= t ï€ ï€ ï€« ï€ ï€«t 8 3tz tz z z
= 1 1ï€ ï€« ï€ ï€«ï€©t  8 3tz  ï€ ï€«ï€¨ 1 1z
= 0 5 0ï€ ï€«tz = ï€5tz
(iii) ï€7mn5,12mn2,9mnï€ ï€8, 2mnï€ ï€½ï€3 7mn 5 12mn 2 9mnï€ ï€« ï€8  2mnï€3
= ï€7mn12mn9mnï€2mn  ï€ ï€5 2 8 3
= ï€¨ï€ ï€«  ï€7 12 9 2mn ï€7 11
= 12mnï€4
(iv) a ï€ ï€ ï€« ï€ ï€«   ï€ ï€« ï€ ï€«  ï€ ï€«b 3,b a 3,a b 3 a b 3 b a 3 a b 3
= aï€ ï€«   ï€ ï€ ï€« a a b b b 3 3 3
= a b 3
(v)
14x10yï€12xyï€13,18ï€ ï€7x 10y8xy xy,4 14x10yï€12xyï€ ï€« ï€ ï€13 18 7x 10y8xy 4xy
= 14xï€ ï€«7x 10yï€10yï€12xy8xy 4xyï€ ï€«13 18
= 7x 0y 0xy5 = 7 5x
(vi) 5mï€7n n,3 ï€ ï€«4m 2,2mï€3mnï€ ï€½ ï€ ï€« ï€ ï€«  ï€5 5m 7n 3n 4m 2 2m 3mnï€5
= 5 4mï€ ï€« ï€ ï€« ï€m 2 7 3 3m n n mn ï€2 5
= 5ï€ ï€«4 2m ï€ ï€«ï€¨ 7 3nï€3mnï€3
= 3 4 3mï€ ï€«n mnï€3
(vii) 4x y2 , 3ï€ xy2, 5ï€ xy x y2,5 2 4x y2  ï€( 3xy2) ï€( 5xy2)5x y2
= 4x y2 5x y2 ï€3xy2 ï€5xy2
= 9x y2 ï€8xy2
(viii) 3p q2 2 ï€4pq ï€5, 10p q2 2,159pq7p q2 2
= 3p q2 2 ï€4pq  ï€5  10p q2 215 9 pq7p q2 2
= 3p q2 2 ï€10p q2 2 7p q2 2 4pq9pq 5 15
= 3 10ï€ ï€«7 p q2 2  ï€ ï€«ï€¨ 4 9 pq 20 = 0p q2 2 5pq20 = 5pq 20
(ix) abï€4a b ab a ab ab,4 ï€ ,4 ï€ ï€½ ï€ ï€« ï€ ï€« ï€4a 4b ab 4a ab
= ï€ ï€«  ï€ ï€« ï€4 4 4 4a a b b ab ab
= 0 0 0 0  
(x) x2 ï€ ï€y2 1,y2 ï€ ï€1 x2,1ï€ ï€x2 y2
= x2 ï€ ï€ ï€« ï€ ï€ ï€« ï€ ï€y2 1 y2 1 x2 1 x2 y2
= x x x2 ï€ ï€ ï€ ï€« ï€ ï€ ï€ ï€«2 2 y2 y2 y2 1 1 1
= 1 1 1ï€ ï€ ï€©x2  ï€ ï€« ï€ï€¨ 1 1 1y2 ï€ ï€ ï€«1 1 1
= ï€ ï€ ï€x2 y2 1
Question 3:
Subtract:
(i) ï€5y2 from y2
(ii) 6xy from ï€12xy
(iii) a bï€ ï€© from a b 
(iv) a b ï€5 from b5ï€a
(v) ï€ ï€«m2 5mn from 4m2 ï€3mn8
(vi) ï€ ï€«x2 10xï€5 from 5xï€10
(vii) 5a2 ï€7ab5b2 from 3abï€2a2 ï€2b2
(viii) 4pqï€5q2 ï€3p2 from 5p2 3q2 ï€pq
SOLUTION 3:
(i) y2 ï€ ï€ï€¨ 5y2 = y2 5y2
= 6y2
(ii) ï€12xyï€ï€¨6xy = ï€12xyï€6xy
= ï€18xy
(iii) a ï€ ï€b a b= a b a b ï€ ï€«
= a a b bï€ ï€« 
= 2b
(iv) b5ï€ ï€a a b  ï€5
= 5b ab abï€ ï€ ï€«5a
= 5 2bï€ ab5a
= 5 5 2a ï€b ab (v) 4m2 ï€3mn ï€ ï€8  m2 5mn
= 4m2 ï€3mn  ï€8 m2 5mn
= 4m2  ï€m2 3mnï€5mn8
= 5m2 ï€8mn8
(vi) 5 10xï€ ï€ ï€ ï€«ï€¨ x2 10 5xï€ ï€©
= 5xï€ ï€« ï€10 x2 10x5
= x2  ï€5x 10xï€ ï€«10 5
= x2 ï€ ï€5x 5
(vii) 3abï€2a2 ï€2b2 ï€ï€¨5a2 ï€7ab5b2
= 3abï€2a2 ï€2b2 ï€5a2 7abï€5b2
= 3ab7abï€2a2 ï€5a2 ï€2b2 ï€5b2
= 10abï€7a2 ï€7b2
= ï€ ï€7a2 7b2 10ab
(viii) 5p2 3q2 ï€ pqï€ï€¨4pqï€5q2 ï€3p2
= 5p2 3q2 ï€ ï€pq 4pq5q2 3p2
= 5p2 3p2 3q2 5q2 ï€ ï€pq 4pq
= 8p2 8q2 ï€5pq
Question 4:
(a) What should be added to x2  xy y2 to obtain 2x2 3xy? (b) What should be subtracted from 2a 8b 10 to get ï€ ï€« 3a 7b 16 ?
SOLUTION 4:
(a) Let p should be added. Then according to question,
x2    xy y2 p 2x2 3xy
 p2x2 3xyï€ï€¨x2 xy y 2
 p2x2 3xy xï€ ï€ ï€2 xy y2
 p 2x2 ï€ ï€ ï€«x2 y2 3xy xyï€
 p x ï€ ï€«2 y2 2xy
Hence, x2 ï€ ï€«y2 2xy should be added.
(b) Let q should be subtracted.
Then according to question,
2a  ï€ ï€½ï€ ï€« 8b 10 q 3a 7b 16
 ï€ ï€½ï€ ï€«  ï€q 3a 7b 16 2a 8b 10
 ï€ ï€½ï€ ï€«  ï€ ï€ ï€q 3a 7b 16 2a 8b 10
 ï€ ï€½ï€ ï€ ï€« ï€ ï€« ï€q 3a 2a 7b 8b 16 10
 ï€ ï€½ï€ ï€ ï€«q 5a b 6
 q ï€½ï€ ï€ ï€ ï€«ï€¨ 5a b 6
 q  ï€5a b 6
Question 5: What should be taken away from 3x2 ï€4y2 5xy20 to obtain ï€ ï€ ï€«x2 y2 6xy20 ?
SOLUTION 5:
Let q should be subtracted.
Then according to question,
3x2 ï€4y2 5xy ï€ ï€½ï€ ï€ ï€«20 q x2 y2 6xy20
 q3x2 ï€4y2 5xy20ï€ ï€ ï€ï€¨ x2 y2 6xy20
 q3x2 ï€4y2 5xy   ï€20 x2 y2 6xyï€20
 q3x2  ï€x2 4y2  y2 5xyï€6xy ï€20 20
 q4x2 ï€3y xy2 ï€ ï€«0
Hence, 4x2 ï€3y xy2 ï€ should be subtracted.
Question 6:
(a) From the sum of 3x – y + 11 and – y – 11, subtract 3x – y – 11.
(b) From the sum of 4 + 3x and 5 – 4x + 2x2, subtract the sum of 3x2 – 5x and –x2 + 2x + 5.
SOLUTION 6:
(a) According to question,
3xï€ ï€«  ï€ ï€ ï€ ï€ ï€y 11  y 11 3x y 11 = 3x yï€ ï€« ï€ ï€ ï€ ï€« 11 y 11 3x y 11
= 3xï€ ï€ ï€ ï€«  ï€ ï€«3x y y y 11 11 11
= 3ï€3xï€ ï€« ï€ï€¨1 1 1y  ï€11 11 11
= 0x yï€ ï€«11 = ï€ ï€«y 11
(b) According to question,
4 3 x5 4 2ï€ x x2  ïƒ«ï€ ï€¨3x2 ï€5x ï€ ï€«ï€¨ x2 2 5x 
= 4 3 5 4 2 x ï€ x x2  ïƒ«ï€ 3x2 ï€5x xï€ 2 2 5x  = 2x2 3 4 5 4xï€ x    ïƒ«ï€ 3x2 ï€x2 2 5 5xï€ x 
= 2x2 ï€ ï€«x 9  ïƒ«ï€ 2x2 ï€3 5x 
= 2x2 ï€ ï€« ï€x 9 2x2  ï€3x 5
= 2x2 ï€2x2 ï€ ï€«  ï€x 3x 9 5
= 2 4x
Exercise 12.3
If m  2, find the value of:
(i) mï€2 (ii) 3mï€5 (iii) 9ï€5m
(iv) 3m2 ï€ ï€2m 7 (v) 5m ï€4
2
Question 1:
SOLUTION 1:
(i) mï€2 = 2ï€2 [Putting m 2 ]
= 0
(ii) 3mï€5 = 3 2ï‚´ ï€5 [Putting m 2 ]
= 6 – 5 = 1
(iii) 9ï€5m = 9 – 5 x 2 [Putting m 2 ]
= 9 – 10 = ï€1 (iv) 3m2 ï€ ï€2m 7
= 3 2 2 ï€2 2 7 ï€©ï€ [Putting m 2 ]
= 3 x 4 – 2 x 2 – 7
= 12 – 4 – 7
= 12 – 11 = 1
5m 5 2ï‚´
(v) ï€4 = ï€4 [Putting m 2 ]
2 2
= 5 – 4 = 1
Question 2:
If pï€2, find the value of:
(i) 4p7 (ii)
SOLUTION 2:
ï€3p2  4p 7 (iii) ï€2p3 ï€3p2  4p 7
(i) 4p7 = 4 2 7ï€¨ï€ ï€«ï€© [Putting p ï€2]
= ï€ ï€«8 7 = ï€1
(ii) ï€3p2  4p 7
= ï€ ï€ ï€« ï€ ï€«3 2 2 4 2 7  [Putting p ï€2]
= ï€ ï‚´ ï€ ï€«3 4 8 7
= ï€ ï€ ï€«12 8 7
= ï€ ï€«20 7 = ï€13
(iii) ï€2p3 ï€3p2  4p 7
= ï€ ï€ ï€ ï€ ï€« ï€ ï€«2 2 3 3 2 2 4 2 7 
= ï€ ï‚´ ï€ ï€ ï‚´ ï€ ï€«2  8 3 4 8 7
= 16 12ï€ ï€ ï€«8 7
= ï€ ï€«20 23 = 3
Question 3:
Find the value of the following expressions, when xï€1:
(i) 2xï€7 (ii) ï€ ï€«x 2 (iii)
(iv) 2x2 ï€ ï€x 2
SOLUTION 3:
(i) 2xï€7 = 2 1 7ï€¨ï€ ï€ï€©
= ï€ ï€2 7 = ï€9
(ii) ï€ ï€«x 2 = ï€ ï€ ï€«ï€¨ 1 2
= 1 + 2 = 3
(iii) x2  2x 1 = ï€¨ï€ ï€« ï€ ï€«12 2 1 1 
= 1 – 2 + 1
= 2 – 2 = 0
(iv) 2x2 ï€ ï€x 2 = 2 1ï€¨ï€ ï€ ï€ ï€ï€©2  1 2
= 2 x 1 + 1 – 2
= 2 + 1 – 2
= 3 – 2 = 1
Question 4:
If a  2,b ï€2, find the value of:
(i) a2 b2 (ii) a2  ab b2
SOLUTION 4:
(i) a2 b2 = 22  ï€ï€¨ 22
= 4 + 4 = 8
(ii) a2  ab b2
= 22 2 2ï€©ï€¨ï€ ï€« ï€ï€©  22 = 4 – 4 + 4 = 4
[Putting p ï€2] x2  2x 1
[Putting xï€1]
[Putting x ï€1]
[Putting xï€1]
[Putting xï€1]
(iii) a2 ï€b2
[Putting a  2,b ï€2 ]
[Putting a  2,b ï€2 ]
(iii) a2 ï€b2 = 22 ï€ ï€ï€¨ 22 [Putting a  2,b ï€2 ]
= 4 – 4 = 0
Question 5:
When a  0,b ï€1, find the value of the given expressions:
(i) 2a2b (ii) 2a2  b2 1 (iii) 2a b2  2ab2 ab (iv) a2  ab 2
SOLUTION 5:
(i) 2a2b = 2 0 2 1  ï€ï€¨  [Putting a  0,b ï€1]
= 0 – 2 = ï€2
(ii) 2a2  b2 1 = 2 0 2  ï€ ï€«ï€¨ 1 12 [Putting a  0,b ï€1]
= 2 x 0 + 1 + 1 = 0 + 2 = 2
(iii) 2a b2  2ab2 ab = 2 0 2ï€¨ï€ ï€«1 2 0 1  ï€©ï€¨ï€ ï€«ï€©2 0 1ï€©ï€¨ï€ ï€© [Putting a  0,b ï€1]
= 0 + 0 + 0 = 0
(iv) a2  ab 2 = 02 0 1 2ï€©ï€¨ï€ ï€«ï€© [Putting a  0,b ï€1]
= 0 + 0 + 2 = 2
Question 6:
Simplify the expressions and find the value if x is equal to 2:
(i) x 7 4xï€5 (ii) 3x  ï€2 5 7 x
(iii) 6x5xï€ 2 (iv) 4 2 xï€ ï€« 1 3x 11
SOLUTION 6:
(i) x 7 4xï€5 = x  ï€7 4x 20 = x  ï€4x 7 20
= 5xï€13 = 5 2 13ï‚´ ï€ [Putting x  2]
= 10 13ï€ = ï€3
(ii) 3x  ï€2 5 7 x = 3x  ï€6 5x 7 = 3x  ï€5x 6 7
= 8xï€1 = 8 x 2 – 1 [Putting xï€1]
= 16 – 1 = 15
(iii) 6 5x xï€2 = 6x ï€5x 10 = 11xï€10
= 11 x 2 – 10 [Putting xï€1]
= 22 – 10 = 12
(iv) 4 2 1 3 11 xï€ ï€«  x = 8xï€ ï€« 4 3x 11 = 8x ï€ ï€«3x 4 11
= 11x7 = 11 x 2 + 7 [Putting xï€1]
= 22 + 7 = 29
Question 7:
Simplify these expressions and find their values if x  3,a ï€½ï€ ï€½ï€1,b 2:
(i) 3xï€ ï€ ï€«5 x 9 (ii) 2ï€ ï€« 8x 4x 4
(iii) 3a ï€ ï€«5 8a 1 (iv) 10ï€ ï€ ï€3b 4 5b
(v) 2aï€ ï€ ï€ ï€«2b 4 5 a
SOLUTION 7:
(i) 3xï€ ï€ ï€«5 x 9 = 3x xï€ ï€ ï€«5 9 = 2x4
= 2 3 4 [Putting x 3]
= 6 + 4 = 10
(ii) 2ï€ ï€« 8x 4x 4 = ï€ ï€«  8x 4x 2 4 = ï€ ï€«4x 6
= ï€ ï‚´ 4 3 6 [Putting x 3]
= ï€ ï€« ï€12 6 12
(iii) 3a ï€ ï€«5 8a 1 = 3aï€ ï€« 8a 5 1 = ï€ ï€«5a 6
= ï€ ï€ ï€«5 1 6 [Putting aï€1]
= 5 + 6 = 11
(iv) 10ï€ ï€ ï€3b 4 5b = ï€ ï€ ï€« ï€3b 5b 10 4 = ï€ ï€«8b 6
= ï€ ï€ ï€«8 2 6  [Putting bï€2]
= 16 + 6 = 22
(v) 2aï€ ï€ ï€ ï€«2b 4 5 a = 2a a ï€ ï€ ï€2b 4 5
= 3aï€ ï€2b 9 = 3 1 2 2 9ï€¨ï€ ï€ ï€ ï€ï€©   [Putting a ï€1, bï€2]
= ï€ ï€« ï€3 4 9 = ï€8
Question 8:
(i) If z 10, find the value of z3 ï€3zï€10 .
(ii) If p ï€10, find the value of p2 ï€ ï€2p 100.
SOLUTION 8:
(i) z3 ï€3z ï€10 = 103 ï€310 10 ï€ ï€© [Putting z10]
= 1000 – 3 x 0 = 1000 – 0
= 1000
(ii) p2 ï€ ï€2p 100 = ï€102 ï€ ï€ ï€2 10 100  [Putting p ï€10 ]
= 100 ï€20 100 = 20
Question 9:
What should be the value of a if the value of 2x2  ï€x a equals to 5, when x 0 ?
SOLUTION 9:
Given: 2x2  ï€ ï€½x a 5
2
 2 0   ï€ ï€½0 a 5 [Putting x  0]
 0 ï€ ï€½0 a 5
 aï€5
Hence, the value of a is ï€5.
Question 10:
Simplify the expression and find its value when a 5 and bï€3: 2a ab2   ï€3 ab SOLUTION 10:
Given: 2a ab2   ï€3 ab
 2a2  2ab ï€3 ab
 2a2  2abï€ ï€«ab 3
 2a2  ab 3
 2 5 2 5 3 3ï€©ï€¨ï€ ï€«ï€© [Putting a 5, bï€3]
 2 x 25 – 15 + 3
 50 – 15 + 3
 38
Exercise 12.4
Question 1:
Observe the patterns of digits made from line segments of equal length. You will find such segmented digits on the display of electronic watches or calculators.
(a) … …
6 11 16 21… 5n1 ...
(b) …
4
7 10 13… 3n1 ...
(c) …
7 12 17 22… 5n 2 ...
If the number of digits formed is taken to be n, the number of segments required to form n digits is given by the algebraic expression appearing on the right of each pattern.
How many segments are required to form 5, 10, 100 digits of the kind
SOLUTION 1:
S. No. Symbol Digit’s number Pattern’s Formulae No. of Segments
(i) 5 5n1 26
10 51
100 501
(ii) 5 3n1 16
10 31
100 301
(iii) 5 5n2 27
10 52
100 502
(i) 5n1
Putting n  5, 5 x 5 + 1 = 25 + 1 = 26
Putting n 10, 5 x 10 + 1 = 50 + 1 = 51
Putting n 100, 5 x 100 + 1 = 500 + 1 = 501
(ii) 3n1
Putting n  5, 3 x 5 + 1 = 15 + 1 = 16
Putting n 10, 3 x 10 + 1 = 30 + 1 = 31
Putting n 100, 3 x 100 + 1 = 300 + 1 = 301
(iii) 5n2
Putting n  5, 5 x 5 + 2 = 25 + 2 = 27
Putting n 10, 5 x 10 + 2 = 50 + 2 = 52
Putting n 100, 5 x 100 + 2 = 500 + 2 = 502
(i) 2nï€1
Putting n 100, 2 x 100 – 1 = 200 – 1 = 199
(ii) 3n2
Putting n  5, 3 x 5 + 2 = 15 + 2 = 17
Question 2:
Use the given algebraic expression to complete the table of number patterns:
S.No. Expression Terms
1st 2nd 3rd 4th 5th … 10th … 100th …
(i) 2nï€1 1 3 5 7 9 --- 19 --- --- ---
(ii) 3n2 2 5 8 11 --- --- --- --- --- ---
(iii) 4n1 5 9 13 17 --- --- --- --- --- ---
(iv) 7n20 27 34 41 48 --- --- --- --- --- ---
(v) n2 1 2 5 10 17 --- --- --- --- 10001 ---
SOLUTION 2:
Putting n 10, 3 x 10 + 2 = 30 + 2 = 32
Putting n 100, 3 x 100 + 2 = 300 + 2 = 302
(iii) 4n1
Putting n  5, 4 x 5 + 1 = 20 + 1 = 21
Putting n 10, 4 x 10 + 1 = 40 + 1 = 41
Putting n 100, 4 x 100 + 1 = 400 + 1 = 401
(iv) 7n20
Putting n  5, 7 x 5 + 20 = 25 + 20 = 55
Putting n 10, 7 x 10 + 20 = 70 + 20 = 90
Putting n 100, 7 x 100 + 20 = 700 + 20 = 720
(v) n2 1
Putting n  5, 5 x 5 + 1 = 25 + 1 = 26
Putting n 10, 10 x 10 + 1 = 100 + 1 = 101
Putting n 100, 100 x 100 + 1 = 10000 + 1 = 10001
Now complete table is,
S.No. Expression Terms
1st 2nd 3rd 5th … 10th … 100th …
(i) 2nï€1 1 3 5 7 9 --- 19 --- 199 ---
(ii) 3n2 2 5 8 11 17 --- 32 --- 302 ---
(iii) 4n1 5 9 13 17 21 --- 41 --- 401 ---
(iv) 7n20 27 34 41 48 55 --- 90 --- 720 ---
(v) n2 1 2 5 10 17 26 --- 101 --- 10001 ---
No comments:
Post a Comment