Tuesday, December 19, 2023

Class – 7 CH-9 RATIONAL NUMBERS MATHS NCERT SOLUTIONS

 

Class – 7 CH-9 RATIONAL NUMBERS 

MATHS NCERT SOLUTIONS

 Exercise 9.1 

     
 
Question 1:   
(i) 1 and 0 (ii) 2 and 1  
(iii) 4 2
and     (iv) 1 2
and  
List five rational numbers between: 
5 3 2 3
  SOLUTION 1:  
(i) 1 and 0 
Let us write 1 and 0 as rational numbers with denominator 6. 
   1  6 and 0 =  0  
6 6
6 5 4 3 2 1
   0  
6 6 6 6 6 6
 1 5  2  1 1 1 0 
6 3 2 3 6
 
Therefore, five rational numbers between 1 and 0 would be 
   5 2 1 1 1
, , , ,  
6 3 2 3 6
 
(ii) 2 and 1  
Let us write 2 and 1 as rational numbers with denominator 6. 
   2  12 and  1  6  
6 6
12 11 10    9 8 7 6
          6 6 6 6 6 6 6
 2 11 5  3  4  7 1 
6 3 2 3 6
 
Therefore, five rational numbers between 2 and 1 would be 
   11 5 3 4 7
, , , ,  
6 3 2 3 6
 
 
 

   
 
(iii) 
 
(iv) 
 
 
 
   
4 2
and   
5 3
4 2
Let us write and as rational numbers with the same denominators. 
5 3
4 36 2 30   and   
5 45 3 45
36 35 34 33 32 31 30
    
45 45 45 45 45 45 45
4 7 34 11 32 31 2
 
5 9 45 15 45 45 3
 
4 2
Therefore, five rational numbers between and would be 
5 3
 7 34 11 32 31 2
, , , , ,  
9 45 15 45 45 3
 
1 2
and   
2 3
1 2
Let us write and as rational numbers with the same denominators. 
2 3
1 3 2 4
  and   
2 6 3 6
3 2 1 1 2 3 4         0    
6 6 6 6 6 6 6
  1 1 1 1 1 1 2        0   
2 3 6 6 3 2 3
 
1 2
Therefore, five rational numbers between and would be 
2 3
 1 1 1 1
, ,0, ,
3 6 6 3
 
 
Question 2:   
Write four more rational numbers in each of the following patterns: 
  3 6 9 12
(i) , , , ,.........   
1 2 3
(ii) , , ,..........  
1 2 3 4
(iii) , , , ,.........   
6   12 18 24
2 2 4 6
(iv) , , , ,.......... 
3   3 6 9
  SOLUTION 2:  
   3 6 9 12
(i) , ,  , ,.........  
3 1 3 2 3 3 3 4
, , , ,......... 
Therefore, the next four rational numbers of this pattern would be 
3 5,  3 6,  3 7,  3 8 = 15, 18, 21, 24 
5 5 5 6 5 7 5 8 25 30 35 40
 
 1 2 3
(ii) , , ,.......... 
1 1 1 2 1 3
, , ,.......... 
  Therefore, the next four rational numbers of this pattern would be 
1 4,  1 5,  1 6,  1 7 =    4, 5, 6, 7 
4 4 4 5 4 6 4 7 16 20 24 28
 
1 2 3 4
(iii) , , , ,.........  
6 12 18 24
1 1 1 2 1 3 1 4
, , , ,......... 
6 1  6 2    6 3 6 4
Therefore, the next four rational numbers of this pattern would be 
1 5 1 6 1 7 1 8 5 6 7 8
  , , , = , , ,  
6 5  6 6  6 7  6 8 30 36 42 48
 
 
2 2 4 6
(iv) , , , ,..........  
3   3 6 9
2 1 2 1 2 2 2 3
, , , ,.......... 
3 1    3 1 3 2  3 3
Therefore, the next four rational numbers of this pattern would be 
2 4 2 5 2 6 2 7 8 10 12 14
, , , = , , ,  
3 4  3 5  3 6  3 7 12 15 18 21
 
 
Question 3:   
Give four rational numbers equivalent to: 
2 5 4
(i)     (ii)     (iii)   
7 3 9
  SOLUTION 3:  
2
(i)    
7
2 2 4  2 3 6  2 4 8  2 5 10
 ,  ,  ,  
7 2 14 7 3 21 7 4 28 7 5 35
  4 6 8 10
Therefore, four equivalent rational numbers are , , ,
14 21 28 35
5
(ii)    
3
5 2 10 5 3 15 5 4 20 5 5 25
, , ,  
3 2 6  3 3 9  3 4 12  3 5 15
10 15 20 25
Therefore, four equivalent rational numbers are , , ,
 6 9 12 15
(iii) 
 
8 12 16 20
Therefore, four equivalent rational numbers are , , ,
18 27 36 45
 
 
 
Question 4:   
Draw the number line and represent the following rational numbers on it: 
3 5 7 7
(i)     (ii)     (iii)     (iv)   
4 8 4 8
  SOLUTION 4:  
(i)    
 
(iv)    
   
Question 5:   
The points P, Q, R, S, T, U, A and B on the number line are such that, TR = RS = SU and AP = PQ = QB. Name the rational numbers represented by P, Q, R and S. 
  
Each part which is between the two numbers is divided into 3 parts. 
Therefore, A =  , P = , Q =   and B =    
Similarly T =  3, R = 4, S = 5 and U =  6  
3 3 3 3
Thus, the rational numbers represented P, Q, R and S are 7 8, , 4 and  5 
3 3 3 3 respectively. 
 
 
Question 6:   
Which of the following pairs represent the same rational numbers: 
7 3
(i) and    
21 9
16 20
(ii) and    
20 25
2 2
(iii) and   
3 3
3 12
(iv) and      
5 20
8 24
(v) and      
5 15
1 1
(vi)   and   
3
(vii) and  
9 9
 
 

   
  SOLUTION 6
(i) 
  
   
  
 
(ii) 
  
   
  
 
(iii) 
 
  
  
 
(iv) 
  
  
 
   
:  
7 3
and   
21 9
7 1 3 1
= and =    
21 3 9 3
1 1
 
3 3
7 3
 
21 9
16 20
and   
20 25
16 4 20 4 4
  =   and =    
20 5 25 5 5
4 4
=   
5 5
16 20
 = 20 25
2 2
and   
3 3
2 2 2 2
=   and =    
3 3 3 3
  =   
2 2
=  
3 3
3 12
and   
5 20
3 3 12 3  =   and   =  
5 5 20 5
3 3
=  
5 5
3 12
  =  
5 20
  [Converting into lowest term] 
[Converting into lowest term] 
[Converting into lowest term] 
[Converting into lowest term] 

   
8 24
(v) and   
5 15
8 8 24 8
=   and   = [Converting into lowest term] 
5 5 15 5
8 8
  = 5 5
8 24
  =  
5 15
 
1 1
(vi) and   
3 9
1 1 1 1
=   and = [Converting into lowest term] 
3 3 9 9
1 1   
3 9
1 1    
3 9
 
5 5
(vii) and   
9 9
5 5 5 5
=   and = [Converting into lowest term] 
9 9 9 9
5  
9 9
5 5    
9 9
 
 
Question 7:   
Rewrite the following rational numbers in the simplest form: 
8 25 44 8
(i)     (ii)     (iii)     (iv)   
6 45 72 10
  SOLUTION 7:  
8  8 2 4
(i) = =   [H.C.F. of 8 and 6 is 2] 
6 62 3
 
 
(ii)    =     [H.C.F. of 25 and 45 is 5] 
44  44 4 11
72 724 18
(iv) 8  8 2 4
= =   [H.C.F. of 8 and 10 is 2] 
(iii)   = =   [H.C.F. of 44 and 72 is 4] 
10 102 5
 
 
Question 8:   
Fill in the boxes with the correct symbol out of <, > and =: 
    
    
    
    
52 45 714 87
(i)     (ii)   (iii)   (iv)   
73 57 816 54
    
    
    
11 557
(v)   (vi)   (vii) 0   
34 11116
  SOLUTION 8:  
 
5 2
(i) Since, the positive number if greater than negative number. 
7
   
  
5 7 7 5 35 35 5 7
7 2 14 1 14 14 7 14
(ii) 4 75 5    28  < 25  4  <  5 
   
  
82   16  1 16 16 8 16
8 4 7 5 32 35 8 7
(iii)     =      =  
   
  
(iv)     >     >   
5 44 5 20 20 5 4
    
11 1 1
(v)   <   
34 3 4
    
55 5 5
11 11
7 11 11
(vi)   =   
 
(vii) 0  >  Since, 0 is greater than every negative number. 6
 
 
 
Question 9:   
Which is greater in each of the following: 
2 5  5 4 3 2 1 1
(i) ,     (ii) ,   (iii) ,   (iv) ,   
3 2 6 3 4 3 4 4
2 4
(v) 3 , 3  
7 5
  SOLUTION 9:  
(i)   and    
4 15 2 5
Since <   Therefore   
6 6 3 2
  5 1 5  4 2 8
(ii)  and   6 1 6 3 2 6
Since 5 > 8  Therefore 5 > 4  
6 6 6 3
 3 3 9 2  4 8
(iii)  and   
4 3 12   3  4 12
Since 9 < 8  Therefore 3  2  
12 12 4 3
1 1
(iv) < Since positive number is always greater than negative 
4 4 number. 
(v) 32  23   23 5  115 and 34  19   19 7  133  
7 7 7 5 35 5 5 5 7 35
Since 115 > 133  Therefore 3 2 > 3 4  
35 35 7 5
 
 
Question 10:   
Write the following rational numbers in ascending order: 
(i)   3, 2, 1  
1 2 4
(ii)  
(iii)   3, 3, 3 
7 2 4
 
  SOLUTION 10:  
  3 2 1
(i) , ,   
5 5 5
3 2 1
   
5 5 5
1  2 4 3  2 12
(ii) , ,    , ,   [Converting into same denominator] 
3 9 3 9 9 9
12 2 3 4 2 1    Now    
9 9 9 3 9 3
  3 3 3
(iii) , ,    
7 2 4
3 3 3
   
2 4 7 

 Exercise 9.2  

 
Question 1:   
Find the sum: 
5 11 5 3
(i) 4 4   (ii) 3  5  
9 22 3 5
(iii)   (iv)   
10 15 11 9
8 2 2
(v)   (vi) 0  
19 57 3
1 3
(vii) 2 4  
3 5
  SOLUTION 1:  
5 11 5 11 6 3
(i)  4  = 4 = 4  2  4 
5 3 25 9
(ii)  =     [L.C.M. of 3 and 5 is 15] 
3 5 15 15
259 34 4
  =  2   
15 15 15
9 22  9 3 22 2 27 44
(iii) = = [L.C.M. of 10 and 15 is 30] 
10 15 10 3 15 2 30 30
 27 44 17
     =   
30 30
3 5  3 9 5 11 27 55
(iv)  = = [L.C.M. of 11 and 9 is 99] 
11 9  11 9 9 11 99 99
 
2755 82
     =   
99 99
8 2  8 3  2 1 24 2
(v) = = [L.C.M. of 19 and 57 is 57] 
19 57 19 3 57 1 57 57
 24 2 26
         =   =   
57 57
2 2
(vi)  0   
3 3
1
 
(vii) 21 43 = 7  23 =  7 5  23 3 = 35  69 [L.C.M. of 3 and 5 is 15] 
3 5 3 5 3 5 5 3 15 15
34 4
       =  =  2 
15 15
 
 
Question 2:   
(i) 7 17    
24 36 (ii) 5 6
 21  
63 
(iii) 6 7
15  
13  (iv) 3 7    
8 11
Find: 
(v)  2
  SOLUTION 2:  
7 1721 34
(i) =  =   [L.C.M. of 24 and 36 is 72] 
24 3672 72
21 34 13
=   =   
72 72
5 6 5 1  6 3 5 18
(ii) 63 21 = 63 1  21 3  = 63  63  [L.C.M. of 63 and 21 is 63] 
5  18 5 18 23
  =   =   
63 63 63
6 7  6 15  7 13 90 91
(iii) 13 15 = 13 15 15 13  = 195 195 [L.C.M. of 13 and 15 is 195] 
  90  91  90 91 1
195 195 195
3 7  3 11 7 8 33 56 (iv) = =   
8 11 8 11 11 8 88 88
 33 56 89 1
  = = 1   
88 88 88 [L.C.M. of 8 and 11 is 88] 
1
(v) 2 6 = 19  6 =  19 1 6 9  
9 9 1 9 1 1 9
19 54  19 54 73 1 [L.C.M. of 9 and 1 is 9] 
  =   =   
  = = = 8  
9 9 9 9 9
2

   
Question 3:   
Find the product: 
9 7
(i)  4    
2 
6 9
(iii)    
5 11
3 2
(v)    
11 5
  SOLUTION 3:  
9 7 9  7 63 7
(i) 2 4  = 2 4 = 8 7 8  
3 3  9
(ii)    9 272 7  
10 10 10 10
6 9  6 9 54
(iii)     
5 11 5 11 55
3 2 3  2 6 (iv)  5  7 5  35  
7
3 2 3 2 6 (v)     
11 5 11 5 55
3 5 3  5
(vi)   5 3 1 
5  3   
 
 
Question 4:   
Find the value of: 
(i)  4     
4
(iii)   3   
5
2 1
(v)    
13 7
3 4
(vii)   
13 65
 
 
  (ii) 
(iv) 
(vi) 
(ii) 
(iv) 
(vi)   9  
3 2
 5   
7 
3 5
 5 3
3
 2  
5
1 3
  
8 4
7  2 
13  
12

   
  SOLUTION 4:  
(i)  4   =      4   2 3 6  
3 3 1  3 1
(ii) 2 =    3  
5 5 2 5 2 10
4 4 1  4 1 4 (iii)   3 =   5 5 3 5   3 15
1 3 1 4  1 1 1 (iv)  =  =   
8 4 8 3 2 3 6
2 1 2 7  2 7 14 1
(v)  =   1  
13 7 13 1 13 1 13 13
7 2 7 13  7 13 91 19
(vi) 13 = 12 2 = 12  2  24 324  
12 
3 4 3 65 3  5 15 3
(vii) 65 = 134  1 4  4 34  13 
 
 
 

No comments:

Post a Comment

Collect Suduko, Magic Square, Mathematical Riddles, Puzzles and Brain Teasers from any Newspaper, Magazine or google and solve it.

  Collect Suduko, Magic Square, Mathematical Riddles, Puzzles and Brain Teasers from any Newspaper, Magazine or google and solve it.  SUDUKO...