Sunday, March 17, 2024

MATHEMATICAL CONCEPTS GAMES

 MATHEMATICAL CONCEPTS GAMES

Mathematical Concepts
By chithra dhananjayan
Percent to fractions
๐‘ช๐’๐’๐’—๐’†๐’“๐’”๐’Š๐’๐’
Draw a circle with radius 4 cm
๐’…๐’Š๐’—๐’Š๐’…๐’† ๐’Š๐’๐’•๐’ ๐’—๐’‚๐’“๐’Š๐’๐’–๐’” ๐’‘๐’‚๐’“๐’•๐’”
Draw a circle with radius 4 cm
๐’…๐’Š๐’—๐’Š๐’…๐’† ๐’Š๐’๐’•๐’ ๐Ÿ“ ๐’‘๐’‚๐’“๐’•๐’”
Draw a circle with radius 4 cm
๐’…๐’Š๐’—๐’Š๐’…๐’† ๐’Š๐’๐’•๐’ ๐Ÿ– ๐’‘๐’‚๐’“๐’•๐’”
Draw a circle with radius 4 cm




๐’…๐’Š๐’—๐’Š๐’…๐’† ๐’Š๐’๐’•๐’ ๐Ÿ๐ŸŽ ๐’‘๐’‚๐’“๐’•๐’”
Arrange in ascending order
๐‘ญ๐’“๐’‚๐’„๐’•๐’Š๐’๐’ 
Arrange in ascending order


๐‘ญ๐’“๐’‚๐’„๐’•๐’Š๐’๐’ 
CHANGE THE DIRECTION OF BIRD FACE INTO ANOTHER DIRECTION, BY SHIFTING 2 MATCH STICKS
๐‘ฉ๐‘ฐ๐‘น๐‘ซ ๐‘ญ๐‘จ๐‘ช๐‘ฌ
CHANGE THE DIRECTION OF BIRD FACE INTO ANOTHER DIRECTION, BY SHIFTING 2 MATCH STICKS
๐‘ฉ๐‘ฐ๐‘น๐‘ซ ๐‘ญ๐‘จ๐‘ช๐‘ฌ ๐‘บ๐‘ถ๐‘ณ๐‘ผ๐‘ป๐‘ฐ๐‘ถ๐‘ต
PENTOMINOS FILL TOGETHER



R๐‘ฌ๐‘ช๐‘ป๐‘จ๐‘ต๐‘ฎ๐‘ณ๐‘ฌ ๐Ÿ๐ŸŽ ๐‘ช๐‘ด X 6 CM = 60
12 PENTOMINOS FILL TOGETHER 60/12= 5 EACH
PENTOMINOS FILL TOGETHER
R๐‘ฌ๐‘ช๐‘ป๐‘จ๐‘ต๐‘ฎ๐‘ณ๐‘ฌ ๐Ÿ๐ŸŽ ๐‘ช๐‘ด X 6 CM = 60
12 PENTOMINOS FILL TOGETHER 
FILL TOGETHER



R๐‘ฌ๐‘ช๐‘ป๐‘จ๐‘ต๐‘ฎ๐‘ณ๐‘ฌ ๐Ÿ๐ŸŽ ๐‘ช๐‘ด X 6 CM = 60
12 PENTOMINOS FILL TOGETHER 60/12= 5 EACH
ErATOSTHENES


๐‘ท๐‘น๐‘ฐ๐‘ด๐‘ฌ ๐‘ต๐‘ผ๐‘ด๐‘ฉ๐‘ฌ๐‘น๐‘บ
Cross out or circle out 1
Retain 2 cross every 2nd number or multiple of 2.
Retain 3 cross every 3rd number or multiple of 3.
Retain 5 cross every 5th  number or multiple of 5.
Retain 7 cross every 7th  number or multiple of 7.
Retain 13 cross every 13th number or multiple of 13.
 

So prime numbers are 2, 3,5,7,11,13,17,19,23,29,31
37,41,43,47,53,59,61,67,71,73,79,83,89,97


MULTIPLES OF 2
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ
MULTIPLES OF 3
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ‘
MULTIPLES OF 4
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ’
MULTIPLES OF 5
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ“
MULTIPLES OF 6
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ”
MULTIPLES OF 7
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ•
MULTIPLES OF 8
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ–
MULTIPLES OF 9
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ—
MULTIPLES OF 10
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ๐ŸŽ
MULTIPLES OF 11
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ๐Ÿ
MULTIPLES OF 12
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ๐Ÿ
MULTIPLES OF 13
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ๐Ÿ‘
MULTIPLES OF 14
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ๐Ÿ’
MULTIPLES OF 15
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ๐Ÿ“
MULTIPLES OF 16
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ๐Ÿ”
MULTIPLES OF 17
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ๐Ÿ•
MULTIPLES OF 18
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ๐Ÿ–
MULTIPLES OF 19
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ9
MULTIPLES OF 20
๐‘ด๐‘ผ๐‘ณ๐‘ป๐‘ฐ๐‘ท๐‘ณ๐‘ฌ๐‘บ ๐‘ถ๐‘ญ ๐Ÿ๐ŸŽ




















Think or imagine




Think of any 2 digit number. Subtract from it constituents its numbers.
Example 63
         - 09 (6+3)
54
Find this number in the table and the symbol to which it corresponds.
Imagine yourself mentally that symbol click show.


Use only 3 columns
Think or imagine
Think of any 2 digit number. Subtract from it constituents its numbers.
Example 63
         - 09 (6+3)
54
Find this number in the table and the symbol to which it corresponds.
Imagine yourself mentally that symbol click show.

Use only 3 columns
X – 21 SMILEY – 10 SUN -11 RHYTHM -12 HEART – 12 SPADE – 9 BOX – 14  BLACK-4 RUPEE-6
Think or imagine
Solve the puzzle



Solve 
Solve the puzzle
Solution 
think





๐’•๐’‰๐’Š๐’๐’Œ ๐’๐’‡ ๐’‚ ๐Ÿ ๐’…๐’Š๐’ˆ๐’Š๐’• ๐’๐’“ ๐Ÿ ๐’…๐’Š๐’ˆ๐’Š๐’• ๐’๐’–๐’Ž๐’ƒ๐’†๐’“  - y
Double the number – 2y
Add 12 – 2y+12
Divide the total by (๐Ÿ๐’€+๐Ÿ๐Ÿ)/๐Ÿ 
Subtract the original number
Was the answer 6?
Why this trick works?
Y
2y
2y+12
(๐Ÿ๐’€+๐Ÿ๐Ÿ)/๐Ÿ = y+6
Y+6-y = 6

think
๐’•๐’‰๐’Š๐’๐’Œ ๐’๐’‡ ๐’‚ ๐Ÿ ๐’…๐’Š๐’ˆ๐’Š๐’• ๐’๐’“ ๐Ÿ ๐’…๐’Š๐’ˆ๐’Š๐’• ๐’๐’–๐’Ž๐’ƒ๐’†๐’“  - y
Double the number – 2y
Add 18 – 2y+18
Divide the total by 2  (๐Ÿ๐’€+๐Ÿ๐Ÿ–)/๐Ÿ 
Subtract the original number
Was the answer 6?
Why this trick works?
Y
2y
2y+18
(๐Ÿ๐’€+๐Ÿ๐Ÿ–)/๐Ÿ  = y+9
Y+9-y = 9

1089
๐’‚๐’ƒ๐’„ ๐’–๐’๐’Œ๐’๐’๐’˜๐’ ๐Ÿ‘ ๐’…๐’Š๐’ˆ๐’Š๐’•
     100a+10b+c
    -100c+10b+a
100(a-c)+(c-a)-99(a-c)
 851
-158
  693
+396
1089

685
-586
099
+990
1089
Multiples of 99
99 198 397 396 495 594 693 792 891
1089
 ๐’‚๐’๐’š ๐Ÿ ๐’‘๐’๐’”๐’Š๐’•๐’Š๐’—๐’† ๐’๐’๐’” ๐’ƒ๐’†๐’•๐’˜๐’†๐’†๐’ ๐Ÿ&๐Ÿ๐ŸŽ
1 9 y
2 2 x+y
3 11 x+2y
4 13 2x+3y
5 24 3x+5y
6 37 5x+8y
7 61 8x+13y
8 98 13x+21y
9 159 21x+34y
10 257 55x+88y
        671 ๐Ÿ๐Ÿ“๐Ÿ•/๐Ÿ๐Ÿ“๐Ÿ— = 1.616

TRIANGULaR NUMBERS
(๐ง(๐ง+๐Ÿ))/๐Ÿ
Divisibility test
Divisibility test









Place value cards
Place value cards
Upside down years
Upside down years – look exactly the same upside down as its does the right way up.
1961

Angle in names
Find Angles in your names
TEACHING AIDS
VOLUME OF CYLINDER - ๐œ‹๐‘Ÿ^2 h
TEACHING AIDS


VOLUME OF CYLINDER - ๐œ‹๐‘Ÿ^2 h

Nomograph – A MATHEMATICAL TOOL





A nomogram, also called a nomograph, alignment chart, or abaque, is a graphical calculating device, a two-dimensional diagram designed to allow the approximate graphical computation of a mathematical function.
The field of nomography was invented in 1884 by the French engineer Philbert Maurice d'Ocagne (1862–1938) and used extensively for many years to provide engineers with fast graphical calculations of complicated formulas to a practical precision. Nomograms use a parallel coordinate system invented by d'Ocagne rather than standard Cartesian coordinates.
A nomogram consists of a set of n scales, one for each variable in an equation. Knowing the values of n-1 variables, the value of the unknown variable can be found, or by fixing the values of some variables, the relationship between the unfixed ones can be studied. The result is obtained by laying a straightedge across the known values on the scales and reading the unknown value from where it crosses the scale for that variable. The virtual or drawn line created by the straightedge is called an index line or isopleth.
Nomograms flourished in many different contexts for roughly 75 years because they allowed quick and accurate computations before the age of pocket calculators
 nomogram for a three-variable equation typically has three scales, although there exist nomograms in which two or even all three scales are common. Here two scales represent known values and the third is the scale where the result is read off. The simplest such equation is u1 + u2 + u3 = 0 for the three variables u1, u2 and u3. An example of this type of nomogram is shown on the right, annotated with terms used to describe the parts of a nomogram.

Nomograph – A MATHEMATICAL TOOL
More complicated equations can sometimes be expressed as the sum of functions of the three variables. For example, the nomogram at the top of this article could be constructed as a parallel-scale nomogram because it can be expressed as such a sum after taking logarithms of both sides of the equation.

The scale for the unknown variable can lie between the other two scales or outside of them. The known values of the calculation are marked on the scales for those variables, and a line is drawn between these marks. The result is read off the unknown scale at the point where the line intersects that scale. The scales include 'tick marks' to indicate exact number locations, and they may also include labeled reference values. These scales may be linear, logarithmic, or have some more complex relationship.

The sample isopleth shown in red on the nomogram at the top of this article calculates the value of T when S = 7.30 and R = 1.17. The isopleth crosses the scale for T at just under 4.65; a larger figure printed in high resolution on paper would yield T = 4.64 to three-digit precision. Note that any variable can be calculated from values of the other two, a feature of nomograms that is particularly useful for equations in which a variable cannot be algebraically isolated from the other variables.

Straight scales are useful for relatively simple calculations, but for more complex calculations the use of simple or elaborate curved scales may be required. Nomograms for more than three variables can be constructed by incorporating a grid of scales for two of the variables, or by concatenating individual nomograms of fewer numbers of variables into a compound nomogram.
Nomograph

Rules: 
B + A = C
10 + 4 = 14
14 – 10 = 4
14 – 4 = 10


Nomograph


Rules: 
B + A = C
9+3=12
12 – 3 = 9
12 – 9 = 3


Multiplication tables
2 tables
2 x 1 = 2
2 x 2 = 4
2 x 3 = 6
2 x 4 = 8
2 x 5 = 10
2 x 6 = 12
2 x 7 = 14
2 x 8 = 16
2 x 9 = 18
2 x 10 = 20





No comments:

Post a Comment

4 4 4 4 4 4 4 .....เฎ…เฎช்เฎชเฎŸி เฎ‡เฎจ்เฎค ‘เฎจாเฎฒு’เฎ•்เฎ•ு เฎŽเฎฉ்เฎฉเฎคாเฎ™்เฎ• เฎธ்เฎชெเฎทเฎฒ்....?????

4 4 4 4 4 4 4 .....เฎ…เฎช்เฎชเฎŸி เฎ‡เฎจ்เฎค ‘เฎจாเฎฒு’เฎ•்เฎ•ு เฎŽเฎฉ்เฎฉเฎคாเฎ™்เฎ• เฎธ்เฎชெเฎทเฎฒ்....????? 01. ‘เฎจாเฎฒு’ เฎชேเฎฐு ‘เฎจாเฎฒு’ เฎตிเฎคเฎฎா เฎชேเฎšுเฎตாเฎ™்เฎ•. 02. ‘เฎจாเฎฒு’ เฎชேเฎฐுเฎ•்เฎ•ு เฎจเฎฒ்เฎฒเฎคு เฎจเฎŸเฎ•...