Monday, January 15, 2024

CLASS 8 MATHS 14 Factorisation QUESTIONS

 14 Factorisation

14.1 Introduction 

 14. 1.1 Factors Of Natural Numbers

14.1.2 Factors Of Algebraic Expressions

14.2 What Is Factorization

14.2.1 Method Of Common Factors

14.2.2 Factorization By Regrouping Terms

14.2.3 Factorization Using Identities

14.2 4  Factors Of The Form (X + A)( X + B)

14.3 Division Of Algebraic Expressions

14.3.1 Division Of Monomial By Another Monomial

14.3 2 Division Of A Polynomial By A Monomial

14.4 Division Of Algebraic Expressions Continued Polynomial By Polynomial

14.5 Can You Find The Error

WHAT HAVE WE DISCUSSED? 

1. When we factorise an expression, we write it as a product of factors. These factors may be numbers, algebraic variables or algebraic expressions. 

2. An irreducible factor is a factor which cannot be expressed further as a product of factors. 3. A systematic way of factorising an expression is the common factor method. It consists of three steps: (i) Write each term of the expression as a product of irreducible factors (ii) Look for and separate the common factors and (iii) Combine the remaining factors in each term in accordance with the distributive law. 

4. Sometimes, all the terms in a given expression do not have a common factor; but the terms can be grouped in such a way that all the terms in each group have a common factor. When we do this, there emerges a common factor across all the groups leading to the required factorisation of the expression. This is the method of regrouping. 

5. In factorisation by regrouping, we should remember that any regrouping (i.e., rearrangement) of the terms in the given expression may not lead to factorisation. We must observe the expression and come out with the desired regrouping by trial and error. 

6. A number of expressions to be factorised are of the form or can be put into the form : a2 + 2 ab + b2, a2 – 2ab + b2, a2 b2 and x2 + (a + b) + ab. These expressions can be easily factorised using Identities I, II, III and IV, given in Chapter 9, 

a2 + 2 ab + b2 = (a + b)2 

a2 – 2ab + b2 = (a b)2 

a2 b2 = (a + b) (a b

x2 + (a + b) x + ab = (x + a) (x + b

7. In expressions which have factors of the type (x + a) (x + b), remember the numerical term gives ab. Its factors, a and b, should be so chosen that their sum, with signs taken care of, is the coefficient of x.

8. We know that in the case of numbers, division is the inverse of multiplication. This idea is applicable also to the division of algebraic expressions.

9. In the case of division of a polynomial by a monomial, we may carry out the division either by dividing each term of the polynomial by the monomial or by the common factor method. 10. In the case of division of a polynomial by a polynomial, we cannot proceed by dividing each term in the dividend polynomial by the divisor polynomial. Instead, we factorise both the polynomials and cancel their common factors. 

11. In the case of divisions of algebraic expressions that we studied in this chapter, we have Dividend = Divisor × Quotient. 

In general, however, the relation is 

Dividend = Divisor × Quotient + Remainder 


Example 1: Factorise 12a2b + 15ab2

Example 2: Factorise 10x2 – 18x3 + 14x4

Factorise: (i) 12x + 36 (ii) 22y – 33z (iii) 14pq+35pqr

Example 3: Factorise 6xy – 4y + 6 – 9x. 

Example 4: Factorise x2 + 8x + 16

Example 5: Factorise 4y2 12y + 9

Example 6: Factorise 49p2 36 

Example 7: Factorise a2 – 2ab + b2 c2 

Example 8: Factorise m4 256

Example 9: Factorise x2 + 5x + 6

Example 10: Find the factors of y2 –7y +12. 

Example 11: Obtain the factors of z2 – 4z – 12. 

Example 12: Find the factors of 3m2 + 9m + 6. 

Example 13: Do the following divisions. 

(i) –20x4 10x2(ii) 7x2y2z2 14xyz 

Divide. (i) 24xy2z3 by 6yz2(ii) 63a2b4c6 by 7a2b2c3

Example 14: Divide 24(x2yz + xy2z + xyz2) by 8xyz

Example 15: Divide 44(x4 – 5x3 – 24x2) by 11x (x – 8) 

Example 16: Divide z(5z2 – 80) by 5z(z + 4)

EXERCISE 14.1 

1. Find the common factors of the given terms. 

(i) 12x, 36

(ii) 2y, 22xy

(iii) 14 pq, 28p2q2 

(iv) 2x, 3x2, 4

(v) 6 abc, 24ab2, 12 a2

(vi) 16 x3, – 4x2, 32x

(vii) 10 pq, 20qr, 30rp 

(viii) 3x2 y3, 10x3 y2,6 x2 y2

2. Factorise the following expressions. 

(i) 7x – 42

(ii) 6p – 12q

(iii) 7a2 + 14

(iv) – 16 z + 20 z3

(v) 20 l2 m + 30 a l m 

(vi) 5 x2 y – 15 xy2

(vii) 10 a2 – 15 b2 + 20 c2 

(viii) – 4 a2 + 4 ab – 4 ca

(ix) x2 y z + x y2z + x y z2 

(x) a x2 y + b x y2 + c x y z 

3. Factorise.

(i) x2 + x y + 8x + 8y

(ii) 15 xy – 6x + 5y – 2 

(iii) ax + bx – ay – by

(iv) 15 pq + 15 + 9q + 25

(v) z – 7 + 7 x y – x y z

EXERCISE 14.2 

1. Factorise the following expressions. 

(i) a2 + 8a + 16

(ii) p2 – 10 p + 25

(iii) 25m2 + 30m + 9 

(iv) 49y2 + 84yz + 36z2

(v) 4x2 – 8x + 4 

(vi) 121b2 – 88bc + 16c2 

(vii) (l + m)2 – 4lm (Hint: Expand ( l + m)2first) 

(viii) a4 + 2a2b2 + b4 

2. Factorise. 

(i) 4p2 – 9q2

(ii) 63a2 – 112b2

(iii) 49x2 – 36 

(iv) 16x5 – 144x3

(v) (l + m)2 – (l m)2 

(vi) 9x2 y2 – 16

(vii) (x2 – 2xy + y2) – z2 

(viii) 25a2 – 4b2 + 28bc – 49c2

3. Factorise the expressions. 

(i) ax2 + bx

(ii) 7p2 + 21q2

(iii) 2x3 + 2xy2 + 2xz2 

(iv) am2 + bm2 + bn2 + an2

(v) (lm + l) + m + 1 

4. Factorise. 

(i) a4 b4

(ii) p4 – 81

(iii) x4 – (y + z)4 

(iv) x4 – (x z)4

(v) a4 – 2a2b2 + b4 

5. Factorise the following expressions. 

(i) p2 + 6p + 8

(ii) q2 – 10q + 21

(iii) p2 + 6p – 16

(vi) y (y + z) + 9 (y + z)

(vii) 5y2 – 20y – 8z + 2yz 

(viii) 10ab + 4a + 5b + 2
(ix) 6xy – 4y + 6 – 9x

EXERCISE 14.3 

1. Carry out the following divisions. 

(i) 28x4 56x

(ii) –36y3 9y2

(iii) 66pq2r3 11qr2 

(iv) 34x3y3z3 51xy2z3

(v) 12a8b8 (– 6a6b4

2. Divide the given polynomial by the given monomial. 

(i) (5x2 – 6x) 3x

(ii) (3y8 – 4y6 + 5y4) y4 

(iii) 8(x3y2z2 + x2y3z2 + x2y2z3) 4x2y2z2

(iv) (x3 + 2x2 +3x) 2

(v) (p3q6 p6q3) p3q3 

3. Work out the following divisions.

(i) (10x – 25) 5

(ii) (10x – 25) (2x – 5) 

(iii) 10y(6y + 21) 5(2y + 7)

(iv) 9x2y2(3z – 24) 27xy(z – 8)

(v) 96abc(3a – 12) (5b – 30) 144(a – 4) (b – 6) 

4. Divide as directed. 

(i) 5(2x + 1) (3x + 5) (2x + 1)

(ii) 26xy(x + 5)(y – 4) 13x(y – 4)

(iii) 52pqr (p + q) (q + r) (r + p) 104pq(q + r) (r + p

(iv) 20(y + 4) (y2 + 5y + 3) 5(y + 4)

(v) x(x + 1) (x + 2) (x + 3) x(x + 1)

5. Factorise the expressions and divide them as directed. 

(i) (y2 + 7y + 10) (y + 5)

(ii) (m2 – 14m – 32) (m + 2) 

(iii) (5p2 – 25p + 20) (p – 1)

(iv) 4yz(z2 + 6z – 16) 2y(z + 8)

(v) 5pq(p2 q2) 2p(p + q

(vi) 12xy(9x2 – 16y2)
4xy(3x + 4y)
(vii) 39y3(50y2 – 98) 26y2(5y + 7)

EXERCISE 14.4 

Find and correct the errors in the following mathematical statements.
1. 4(x – 5) = 4x – 5
2. x(3x + 2) = 3x2 + 2
3. 2x + 3y = 5xy
4. x + 2x + 3x = 5x
5. 5y + 2y + y – 7y = 0
6. 3x + 2x = 5x2
7. (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7
8. (2x)2 + 5x = 4x + 5x = 9x
9. (3x + 2)2 = 3x2 + 6x + 4
10. Substituting x = – 3 in 

(a) x2 + 5x + 4 gives (– 3)2 + 5 (– 3) + 4 = 9 + 2 + 4 = 15 

(b) x2 – 5x + 4 gives (– 3)2 – 5 ( – 3) + 4 = 9 – 15 + 4 = – 2 

(c) x2 + 5x gives (– 3)2 + 5 (–3) = – 9 – 15 = – 24 

11. (y – 3)2 = y2 – 9

12. (z + 5)2 = z2 + 25 

13. (2a + 3b) (a b) = 2a2 – 3b2

14. (a + 4) (a + 2) = a2 + 8  

15. (a – 4) (a – 2) = a2 – 8
16. 3x² / 3x² =0






No comments:

Post a Comment

4 4 4 4 4 4 4 .....роЕрок்рокроЯி роЗрои்род ‘роиாро▓ு’роХ்роХு роОрой்ройродாроЩ்роХ ро╕்рокெро╖ро▓்....?????

4 4 4 4 4 4 4 .....роЕрок்рокроЯி роЗрои்род ‘роиாро▓ு’роХ்роХு роОрой்ройродாроЩ்роХ ро╕்рокெро╖ро▓்....????? 01. ‘роиாро▓ு’ рокேро░ு ‘роиாро▓ு’ ро╡ிродрооா рокேроЪுро╡ாроЩ்роХ. 02. ‘роиாро▓ு’ рокேро░ுроХ்роХு роиро▓்ро▓родு роироЯроХ...