Monday, January 15, 2024

CLASS 8 MATHS 14 Factorisation SOLUTIONS

 CLASS 8 MATHS  14 Factorisation SOLUTIONS

Example 1: Factorise 12a2b + 15ab2 

Solution: We have 12a2b = 2 ร— 2 ร— 3 ร— a ร— a ร—

15ab2 = 3 ร— 5 ร— a ร— b ร— b

The two terms have 3, a and b as common factors. 

Therefore,

12a2b + 15ab2

= (3 ร— a ร— b ร— 2 ร— 2 ร— a) + (3 ร— a ร— b ร— 5 ร— b)

= 3 ร— a ร— b ร— [(2 ร— 2 ร— a) + (5 ร— b)]

 = 3ab ร— (4a + 5b

= 3ab (4a + 5b) (required factor form)

Example 2:Factorise 10x2 โ€“ 18x3 + 14x4 

Solution: 10x2 = 2 ร— 5 ร— x ร—

 18x3 = 2 ร— 3 ร— 3 ร— x ร— x ร—

 14x4 = 2 ร— 7 ร— x ร— x ร— x ร— x 

The common factors of the three terms are 2, x and x

Therefore, 10x2 โ€“ 18x3 + 14x4 = (2 ร— x ร— x ร— 5) โ€“(2 ร— x ร— x ร— 3 ร— 3 ร— x) + (2 ร— x ร— x ร— 7 ร— x ร— x)

(2 ร— x ร— x) - [5-(3x3x3xx) + 7xxxx)] = 2x2 ร— (5 โ€“ 9x + 7x2) =2x2(7x2 -9x+5)         

(combining the three terms

Example 3: Factorise 6xy โ€“ 4y + 6 โ€“ 9x. 

Solution: 

6xy โ€“ 4y + 6 โ€“ 9x = 6xy โ€“ 4y โ€“ 9x + 6 

= 2y (3x โ€“ 2) โ€“ 3 (3x โ€“ 2) 

= (3x โ€“ 2) (2y โ€“ 3) 

The factors of (6xy โ€“ 4y + 6 โ€“ 9 x) are (3x โ€“ 2) and (2y โ€“ 3).

Example 4: Factorise x2 + 8x + 16 

Solution:

a2 + 2ab + b2 = x2 + 2 (x) (4) + 42 

= x2 + 8x + 16 

Since a2 + 2ab + b2 = (a + b)2

by comparison x2 + 8x + 16 = ( x + 4)2

Example 5: Factorise 4y2 โ€“ 12y + 9

Solution: 4y2 = (2y)2, 9 = 32 and 12y = 2 ร— 3 ร— (2y)

Therefore, 4y2 โ€“ 12y + 9 = (2y)2 โ€“ 2 ร— 3 ร— (2y) + (3)2

= ( 2y โ€“ 3)2

Example 6: Factorise 49p2 โ€“ 36 

Solution: (a2 โ€“ b2).

 49p2 โ€“ 36 = (7p)2 โ€“ ( 6 )2 

= (7p โ€“ 6 ) ( 7p + 6)

Example 7: Factorise a2 โ€“ 2ab + b2 โ€“ c2 

Solution:

a2 โ€“ 2ab + b2 โ€“ c2 = (a โ€“ b)2โ€“ c2

= [(a โ€“ b) โ€“ c) ((a โ€“ b) + c)] 

= (a โ€“ b โ€“ c) (a โ€“ b + c)

Example 8: Factorise m4 โ€“ 256

Solution: We note m4 = (m2)2 and 256 = (16) 2

m2โ€“16 = m2 โ€“ 42 

= (m โ€“ 4) (m + 4) 

Therefore, m4 โ€“ 256 = (m โ€“ 4) (m + 4) (m2 +16)

Example 9: Factorise x2 + 5x + 6

Solution:

(x +2) (x + 3)

a = 2, b = 3. For this a + b = 5 and ab = 6

 x2 + (a + b) x + ab

Example 10: Find the factors of y2 โ€“7y +12. 

Solution: 12 = 3 ร— 4 and 3 + 4 = 7.

Therefore, y2 โ€“ 7y+ 12 = y2 โ€“ 3y โ€“ 4y + 12 

 = y (y โ€“3) โ€“ 4 (y โ€“3) = (y โ€“3) (y โ€“ 4)

Example 11: Obtain the factors of z2 โ€“ 4z โ€“ 12. 

Solution: z2 โ€“ 4z โ€“12 = z2 โ€“ 6z + 2z โ€“12 

= z(z โ€“ 6) + 2(z โ€“ 6 ) 

= (z โ€“ 6) (z + 2) 

Example 12: Find the

factors of 3m2 + 9m + 6. 

Solution:

3m2 + 9m + 6 = 3(m2 + 3m + 2) 
Now, m 2 + 3m + 2 = m2 + m + 2m + 2 (as 2 = 1 ร— 2)
= m(m + 1)+ 2( m + 1) 
= (m + 1) (m + 2) 
Therefore, 3m2 + 9m + 6
= 3(m + 1) (m + 2)

Example 13: Do the following divisions. 

(i) โ€“20x4 โŽŸ 10x2(ii) 7x2y2z2 โŽŸ 14xyz 

Solution: (i) โ€“20x4 = โ€“2 ร— 2 ร— 5 ร— x ร— x ร— x ร—

10x2 = 2 ร— 5 ร— x ร— x

Solution= โ€“2x2

Example 14: Divide 24(x2yz + xy2z + xyz2) by 8xyz

Solution: 24 (x2yz + xy2z + xyz2

= 2 ร— 2 ร— 2 ร— 3 ร— [(x ร— x ร— y ร— z) + (x ร— y ร— y ร— z) + (x ร— y ร— z ร— z)]

= 2 ร— 2 ร— 2 ร— 3 ร— x ร— y ร— z ร— (x + y + z) = 8 ร— 3 ร— xyz ร— (x + y + z)

Therefore, 24 (x2yz + xy2z + xyz2) โž— 8xyz

= 3x + 3y + 3z = 3(x + y + z)

Example 15: Divide 44(x4 โ€“ 5x3 โ€“ 24x2) by 11x (x โ€“ 8) 

Solution: Factorising 44(x4 โ€“ 5x3 โ€“ 24x2), we get 

44(x4 โ€“ 5x3 โ€“ 24x2) = 2 ร— 2 ร— 11 ร— x2(x2 โ€“ 5x โ€“ 24)

= 2 ร— 2 ร— 11 ร— x2(x2 โ€“ 8x + 3x โ€“ 24)

= 2 ร— 2 ร— 11 ร— x2 [x (x โ€“ 8) + 3(x โ€“ 8)] 

= 2 ร— 2 ร— 11 ร— x2 (x + 3) (x โ€“ 8)

= 2 ร— 2 ร— x (x + 3) = 4x(x + 3)

Example 16: Divide z(5z2 โ€“ 80) by 5z(z + 4)

Solution: Dividend = z(5z2 โ€“ 80)

= z ร— 5 ร— (z2 โ€“ 16)

= z[(5 ร— z2) โ€“ (5 ร— 16)]

= 5z ร— (z + 4) (z โ€“ 4) [using the identity a2 โ€“ b2 = (a + b) (a โ€“ b)]

(z โ€“ 4)

No comments:

Post a Comment

Grade 7 Symmetry Chapter Test 2025-2026

  Grade 7 Symmetry Chapter Test 2025-2026 Max marks: 30 Duration 1hr  Answer the following One mark questions (1 x 15 = 15 marks) 1. Tick th...