Activity 4 
OBJECTIVE                                                                    
To verify the algebraic identity :(a – b)2 = a2 – 2ab
+ b2
 
 MATERIAL REQUIRED
Drawing sheets, cardboard,
coloured papers, scissors, ruler and adhesive.
METHOD OF CONSTRUCTION
1.   
Cut
out a square ABCD of side a units from a drawing sheet/cardboard [see Fig. 1].
 
 2.  
Cut out a square EBHI of side b units (b < a) from a drawing
sheet/cardboard [see Fig. 2].
 3.  
Cut out a rectangle GDCJ of length a units and breadth b units from a
drawing sheet/cardboard [see Fig. 3].
 4.  
Cut out a rectangle IFJH of length a units and breadth b units from a
drawing sheet/cardboard [see Fig. 4].
5. Arrange these cut outs as shown
in Fig. 5.
 DEMONSTRATION
 According
to figure 1, 2, 3, and 4, Area of square ABCD = a2,
Area of square EBHI = b2
 Area
of rectangle GDCJ = ab,
Area of rectangle IFJH = ab
 From
Fig. 5, area of square AGFE = AG × GF = (a
– b) (a – b) = (a – b)2
 Now,
area of square AGFE = Area of square ABCD + Area of square EBHI 
 
  | – Area of rectangle IFJH – Area of
  rectangle | Fig. 5 |   | 
 
  |   |   | 
 
  | GDCJ |   |   | 
 
  | = a2 | + b2 – ab – ab |   |   | 
 
  | = a2 | – 2ab + b2 |   |   | 
 Here,
area is in square units.
 OBSERVATION
 On
actual measurement: 
 
  | a = .............. | , | b = .............. | , (a – b) = .............. | , | 
 
  | So, a2 = .............. | , | b2 = | .............. | , (a – b)2 = .............. | , | 
 
  | ab = .............. | , | 2ab | = .............. |   | 
 
 
  |  |  |  |  |  |  | 
 
 Therefore, (a
– b)2 = a2 – 2ab + b2
 APPLICATION
 The
identity may be used for
 1.  
calculating the square of a number
expressed as a difference of two convenient numbers.
 2.   simplifying/factorisation
of some algebraic expressions.
 
No comments:
Post a Comment