Activity 33
OBJECTIVE
To find experimental probability
of unit’s digits of telephone numbers listed on a page selected at random of a
telephone directory.
Telephone directory, note book, pen, ruler.
METHOD OF CONSTRUCTION
1. Take a telephone directory and select a page at random.
2. Count the number of telephone numbers on the selected page. Let it be ‘N’.
3. Unit place of a telephone number can be occupied by any one of the digits 0, 1, ..., 9.
4. Prepare a frequency distribution table for the digits, at unit’s place using tally marks.
5. Write the frequency of each of the digits 0, 1, 2, ...8, 9 from the table.
6. Find the probability of each digit using the formula for experimental probability.
DEMONSTRATION
Prepare a frequency distribution table (using tally marks) for digits 0, 1, ..., 8, 9 as shown below:
Digit |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
8 |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
Tally marks |
|
|
|
|
|
|
|
|
|
|
|
Frequency |
n0 |
n1 |
n2 |
n3 |
n4 |
n5 |
n6 |
n7 |
|
n8 |
n9 |
2. Note down frequency of each digit (0, 1, 2, 3,...,9) from the table. Digits 0, 1, 2, 3, ..., 9 are occuring respectively n0, n1, n2, n3, ..., n9 times.
3.
Calculate probability of each digit
considering it as an event ‘E’ using the formula
Total
number of trials
P |
( |
0 |
) |
= |
n0 |
, |
P 1 = |
n1 |
, |
P |
( |
2 |
) |
= |
n2 |
,..., |
P |
( |
9 |
) |
= |
n9 |
|
|
|
|
|
|
|
|
|
|
N . |
|
|
|
|
|
|||||||||||||||||||||
|
|
|
N |
( ) |
|
N |
|
|
|
N |
|
|
|
|
|
|
|
|
|||||||||||
OBSERVATION |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
Total number of telephone numbers on a
page (N) = .......................... |
|
. |
|
|
|||||||||||||||||||||||||
Number of times 0 occurring at unit’s
place (n0) = ........................ |
|
. |
|
|
|||||||||||||||||||||||||
Number of times 1 occurring at unit’s
place (n1) = ........................ |
|
. |
|
|
|||||||||||||||||||||||||
Number of times 2 occurring at unit’s
place (n2) = ........................ |
|
. |
|
|
|||||||||||||||||||||||||
---------------------3
-------------------------- (n3) =
......................... |
|
. |
|
|
|||||||||||||||||||||||||
---------------------
4 |
------------------------ (n4) =
......................... |
|
|
|
|
||||||||||||||||||||||||
Number of times 9 occurring at unit’s place |
|
(n9)= ........................ |
|
|
|
|
|||||||||||||||||||||||
Therefore, experimental probability of occurence of 0 |
= P(0)= |
n0 |
=
............. |
, |
|
||||||||||||||||||||||||
N |
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Experimental probability of occurence of P ( 2)= n2 = ............., ...,
.
N
.
.
P ( 9)= n9/N = ............. .
APPLICATION
Concept of experimental probability is used for deciding premium tables by insurance companies, by metreological department to forecast weather, for forecasting the performance of a company in stock market.
No comments:
Post a Comment