Sunday, July 16, 2023

Class 09 To verify experimentally the different criteria for congruency of triangles using triangle cut-outs.

 Activity 14

 

 




 

OBJECTIVE                                                                  


 

To verify experimentally the different criteria for congruency of triangles using triangle cut-outs.


   MATERIAL REQUIRED

 

Cardboard, scissors, cutter, white paper, geometry box, pencil/sketch pens, coloured glazed papers.

 


METHOD OF CONSTRUCTION

 

1.   Take a cardboard of a convenient size and paste a white paper on it.

 

2.   Make a pair of triangles ABC and DEF in which AB = DE, BC = EF, AC = DF on a glazed paper and cut them out [see Fig. 1].

 

Make a pair of triangles GHI, JKL in which GH = JK, GI = JL, ∠G = ∠J on a glazed paper and cut them out [see Fig. 2].

4.   Make a pair of triangles PQR, STU in which QR = TU, ∠Q = ∠T, ∠R = ∠U on a glazed paper and cut them out [see Fig. 3].

 

5.    Make two right triangles XYZ, LMN in which hypotenuse YZ = hypotenuse MN and XZ = LN on a glazed paper and cut them out [see Fig. 4].

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4

 

DEMONSTRATION

 

1.   Superpose DABC on DDEF and see whether one triangle covers the other triangle or not by suitable arrangement. See that ΔABC covers ΔDEF completely only under the correspondence A↔D, B↔E, C→F. So, ΔABC ≅ ΔDEF, if AB = DE, BC = EF and AC = DF.

 

This is SSS criterion for congruency.

2.   Similarly, establish ΔGHI ≅ ΔJKL if GH = JK. ∠G = ∠J and GI = JL. This is SAS criterion for congruency.

 

3.   Establish ΔPQR ≅ ΔSTU, if QR = TU, ∠Q = ∠T and ∠R = ∠U. This is ASA criterion for congruency.

 

4.   In the same way, ΔSTU ≅ ΔLMN, if hypotenuse YZ = hypotenuse MN and XZ = LN.

 

This is RHS criterion for right triangles.

OBSERVATION

 

 

 

On actual measurement :

 

 

In ΔABC and ΔDEF,

 

 

 

AB = DE = ...................

,

BC = EF = ...................

,

AC = DF = ...................

,

∠A = ...................

,

∠D = ...................

,

∠B = ...................

,

∠C = ...................

,

∠F = ....................

Therefore, ΔABC ≅ ΔDEF.

 

 

2. In ΔGHI and ΔJKL,

 

 

GH = JK = ...................

,

GI = JL = ....................

,

KL= ...................

,

∠G = ...................

,

∠H = ...................

,

∠K = ...................

,

∠L = ....................

 

 

Therefore, ΔGHI ≅ ΔJKL.

 

 

3. In ΔPQR and ΔSTU,

 

 

QR = TU = ...................

,

PQ = ...................

,

PR = ...................

,

SU = ....................

∠Q = ∠T = ...................

,

∠R = ∠U = ...................

,

∠E = ...................,

 

 

 

 

 

 

HI =

...................,

∠J =

...................,

∠I =

...................,

 

 

 

 

 

 

ST = ...................,

 

∠S = ...................,

 

∠P = ....................

4. In ΔXYZ and ΔLMN, hypotenuse YZ = hypotenuse MN = .............

 

XZ=LN=

...................,

XY = ...................

,

 

 

LM = ...................

,

∠X=∠L=90°

 

 

 

∠Y = ...................

,

∠M = ...................

,

∠Z = ...................

,

∠N = ...................

,

 

 

 

 

Therefore, ΔXYZ ≅ ΔLMN.

 

APPLICATION

 

These criteria are useful in solving a number of problems in geometry.

 

These criteria are also useful in solving some practical problems such as finding width of a river without crossing it.

No comments:

Post a Comment

Circumference of the circle

Today we all use the formulas 2πr or πd to calculate the circumference of a circle. Can you believe it if I tell you that this is a Tamil in...